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Gabriel Renault1,2

1Univ. Bordeaux, LaBRI, UMR5800, F-33405 Talence
2CNRS, LaBRI, UMR5800, F-33405 Talence

Email: dorbec@labri.fr, gabriel.renault@labri.fr

3University of Ljubljana

Email: gasper.kosmrlj@student.fmf.uni-lj.si

August 26, 2014

Abstract

In a graph G, a vertex is said to dominate itself and its neighbors. The Domination game

is a two player game played on a finite graph. Players alternate turns in choosing a vertex

that dominates at least one new vertex. The game ends when no move is possible, that is

when the set of chosen vertices forms a dominating set of the graph. One player (Dominator)

aims to minimize the size of this set while the other (Staller) tries to maximize it. The

game domination number, denoted by γg, is the number of moves when both players play

optimally and Dominator starts. The Staller-start game domination number γ′g is defined

similarly when Staller starts. It is known that the difference between these two values is at

most one [4, 9]. In this paper, we are interested in the possible values of the domination

game parameters γg and γ′g of the disjoint union of two graphs according to the values of

these parameters in the initial graphs.

We first describe a family of graphs that we call no-minus graphs, for which no player

gets advantage in passing a move. While it is known that forests are no-minus, we prove

that tri-split graphs and dually chordal graphs also are no-minus. Then, we show that the

domination game parameters of the union of two no-minus graphs can take only two values

according to the domination game parameters of the initial graphs. In comparison, we also

show that in the general case, up to four values may be possible.
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1 Introduction

In a graph G, a vertex is said to dominate itself and its neighbors. The set of vertices dominated

by v is called its closed neighborhood and is denoted by N [v]. A set of vertices is a dominating

set if every vertex is dominated by some vertex in the set. The domination number is the

∗financed in part by the European Union - European Social Fund, and by Ministry of Economic Development

and Technology of Republic of Slovenia.
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minimum cardinality of a dominating set. Domination is a classical topic in graph theory. For

more details we refer to the books by Haynes et al. [7, 8].

The domination game was introduced by Brešar, Klavžar and Rall in [4]. It is played on

a finite graph G by two players, Dominator and Staller. They alternate turns in adding a

vertex to a set S, provided that this added vertex v dominates at least one new vertex, i.e.

N [S] ( N [S ∪ {v}]. The game ends when there are no more possible moves, that is, when

the chosen vertices form a dominating set. Dominator’s goal is that the game finishes in as

few moves as possible while Staller tries to keep the game going as long as she can. There are

two possible variants of the game, depending on who starts the game. In Game 1, Dominator

starts, while in Game 2, Staller starts. The game domination number, denoted by γg(G), is

the total number of chosen vertices in Game 1 when both players play optimally. Similarly, the

Staller-start game domination number γ′g(G) is the total number of chosen vertices in Game 2

when both players play optimally.

Variants of the game where one player is allowed to pass a move once were also considered

in [4, 6, 9] (and possibly elsewhere). In the Dominator-pass game, Dominator is allowed to pass

one move, while in the Staller-pass game, Staller is. We denote respectively by γdpg and γ′dpg the

size of the set of chosen vertices in Game 1 and 2 where Dominator is allowed to pass once, and

by γspg and γ′spg the size of the set of chosen vertices in Games 1 and 2 where Staller is allowed

to pass a move. Note that passing does not count as a move in the game domination number,

and the value of these games is the number of chosen vertices.

An interesting question about the domination game is how the number of chosen vertices in

Game 1 and Game 2 compare on the same graph. Clearly, there are some graphs where Game 1

uses less moves than Game 2. Stars are examples of such graphs. On the other hand, some

other graphs give an advantage to the second player. The cycle C6 on six vertices is an example

of such a graph. Nevertheless, results from Brešar et al. [4] and from Kinnersley et al. [9] give

a bound to the difference, with the following:

Theorem 1.1 ([4],[9]) For any graph G, |γg(G)− γ′g(G)| ≤ 1

It should be noted that this result is obtained by applying a very useful principle from [9],

known as the continuation principle. For a graph G = (V,E) and a subset of vertices S ⊆ V , we

denote by G|S the partially dominated graph G where the vertices of S are considered already

dominated in the game. Kinnersley et al. proved:

Theorem 1.2 (Continuation principle [9]) Let G be a graph and A,B ⊆ V (G). If B ⊆ A,

then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

Note also that Theorem 1.1 naturally extends to partially dominated graphs.

In this paper, we continue the study of the relation between γg(G) and γ′g(G). We say that a

partially dominated graph G|S realizes a pair (k, `) ∈ N×N if γg(G|S) = k and γ′g(G|S) = `. A

consequence of Theorem 1.1 is that the only realizable pairs are of the form (k, k+1), (k, k) and

(k, k − 1). It is known that all these pairs are indeed realizable. Examples of graphs of each of

these three types are given in [4, 5, 9, 10]. Accordingly, we say that a partially dominated graph

G|S is a (k,+) (resp. (k,=), (k,−)) if γg(G|S) = k and γ′g(G|S) = k + 1 (resp. γg(G|S) = k

and γ′g(G|S) = k, γg(G|S) = k and γ′g(G|S) = k − 1). By plus we denote the family of all

graphs that are (k,+) for some positive k. Similarly we define equal and minus.

The initial question that motivated our study is the following:

Question 1 Knowing the family of two graphs G and H, what can we infer on the game dom-

ination number of the disjoint union G ∪H?
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It should be observed that this question is partially motivated by combinatorial game theory

(CGT). Combinatorial games can be classified into four classes according to who wins the game

when each player starts [1, 2]. More importantly, from the classes where two games belong, the

class of the union (called sum in CGT) of these two graphs can often be deduced.

Unfortunately, in the Domination game, we can not deduce similar information in general.

Of course the pair realized by the union of two graphs G ∪H is related to the pairs realized by

the graphs G and H, though different pairs can be attained, as we show in Section 3. However,

we identified a family of graphs, that we call no-minus graphs, for which much more can be said.

We say a graph G is a no-minus graph if for any subset of vertices S, γg(G|S) ≤ γ′g(G|S);

that is G|S is not in minus. Intuitively, the idea is that no player should get any advantage

by passing in a no-minus graph. Kinnersley et al. [9] already proved that forests satisfy the

property of no-minus graphs.

We proceed as follows. In the next section, we first give early results about no-minus graphs,

then we present other classes of graphs that we can prove are no-minus, and finally we describe

the pairs that can be realized by the union of no-minus graphs. We then consider the general

case and the possible values realized by the union of two graphs in the general case showing that

the situation is not as good.

2 About no-minus graphs

2.1 Early properties of no-minus graphs

To begin with no-minus graphs, we first need to prove what we claimed was the intuitive defini-

tion of a no-minus, i.e. that it is not helpful to be allowed to pass in such games. In [4], Brešar

et al. proved the following in general:

Lemma 2.1 ([4]) Let G be a graph. We have γg(G) ≤ γspg (G) ≤ γg(G) + 1 and γg(G) − 1 ≤
γdpg (G) ≤ γg(G).

Though the authors of [4] did not prove it, the exact same proof technique (using the imagi-

nation strategy) can give the following inequalities, for partially dominated graphs and for both

Games 1 and 2.

Lemma 2.2 Let G be a graph, S a subset of vertices of G. We have

γg(G|S) ≤ γspg (G|S) ≤ γg(G|S) + 1 ,

γ′g(G|S) ≤ γ′spg (G|S) ≤ γ′g(G|S) + 1 ,

γg(G|S)− 1 ≤ γdpg (G|S) ≤ γg(G|S) ,

γ′g(G|S)− 1 ≤ γ′dpg (G|S) ≤ γ′g(G|S) .

We now prove that passing is useless in no-minus graphs:

Proposition 2.3 Let G be a no-minus graph. For any subset S of vertices, we have γspg (G|S) =

γdpg (G|S) = γg(G|S) and γ′spg (G|S) = γ′dpg (G|S) = γ′g(G|S).

Proof: By Lemma 2.2, we already have γdpg (G|S) ≤ γg(G|S) ≤ γspg (G|S) and γ′dpg (G|S) ≤
γ′g(G|S) ≤ γ′spg (G|S). Suppose a partially dominated no-minus graph G|S satisfies γdpg (G|S) <

γg(G|S). We use the imagination strategy to reach a contradiction.

Consider a normal Dominator-start game played on G|S where Dominator imagines he

is playing a Dominator-pass game, while Staller plays optimally in the normal game. Since
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γdpg (G|S) < γg(G|S), the strategy of Dominator includes passing a move at some point, say

after x moves are played. Let X be the set of dominated vertices at that point. Since Domi-

nator played optimally the Dominator-pass domination game (but not necessarily Staller), if he

was allowed to pass that move the total number of moves in the game would be no more than

γdpg (G|S). We thus have the following inequality:

x+ γ′g(G|X) ≤ γdpg (G|S) .

Now, remark that since Staller played optimally in the normal game, we have that

x+ γg(G|X) ≥ γg(G|S) .

Adding the fact that G is a no-minus, so that γg(G|X) ≤ γ′g(G|X), we reach the following

contradiction:

γg(G|S) ≤ x+ γg(G|X) ≤ x+ γ′g(G|X) ≤ γdpg (G|S) < γg(G|S) .

Similar arguments complete the proof for the Staller-pass and/or Staller-start games.

The next lemma also expresses a fundamental property of no-minus graphs. It is an extension

of a result on forests from [9], the proof is about the same.

Lemma 2.4 Let G be a graph. If S ⊆ V (G) and γg(G|X) ≤ γ′g(G|X) for every X ⊇ S, then

γg((G ∪K1)|S) ≥ γg(G|S) + 1 and γ′g((G ∪K1)|S) ≥ γ′g(G|S) + 1.

Proof: Given a graph G and a set S satisfying the hypothesis, we use induction on the number

of vertices in V \ S. If V \ S = ∅, the claim is trivial. Suppose now that S  V and that the

claim is true for every G|X with S  X.

Consider first Game 1. Let v be an optimal first move for Dominator in the game on

(G ∪K1)|S. If v is the added vertex, then γg((G ∪K1)|S) = γ′g(G|S) + 1 ≥ γg(G|S) + 1 by our

(no-minus like) assumption on G|S, and the inequality follows. Otherwise, let X = S∪N [v]. By

the choice of the move and induction hypothesis, we have γg((G∪K1)|S) = 1+γ′g((G∪K1)|X) ≥
1 + γ′g(G|X) + 1. Since v is not necessarily an optimal first move for Dominator in the game on

G|S, we also have that γg(G|S) ≤ 1 + γ′g(G|X) and the result follows.

Consider now Game 2. Let w be an optimal first move for Staller in the game on G|S, and

let Y = S ∪ N [w]. By optimality of this move, we have γ′g(G|S) = 1 + γg(G|Y ). Playing also

w in G ∪K1|S, Staller gets γ′g((G ∪K1)|S) ≥ 1 + γg((G ∪K1)|Y ) ≥ 2 + γg(G|Y ) by induction

hypothesis, and the implied inequality follows.

2.2 More no-minus graphs

In this section, we propose other families of graphs that are no-minus. But first we start with

the following observation about minus, that will prove useful.

Observation 2.5 If a partially dominated graph G|S is a (k,−), then for any legal move u in

G|S, the graph G|(S ∪N [u]) is a (k − 2,+).

Proof: Let G|S be a (k,−) and u be any legal move in G|S. By definition of the game

domination number, we have k = γg(G|S) ≤ 1 +γ′g(G|(S ∪N [u])). Similarly, k−1 = γ′g(G|S) ≥
1 + γg(G|(S ∪N [u])). By Theorem 1.1, we get that

k − 1 ≤ γ′g(G|(S ∪N [u])) ≤ γg(G|(S ∪N [u])) + 1 ≤ k − 1
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and so equality holds throughout this inequality chain. Thus G|(S ∪ N [u]) is a (k − 2,+), as

required.

It was conjectured in [5] and proved in [9] that forests are no-minus graphs. We now propose

two other families of graphs that are no-minus. The first is the family of tri-split graphs that

we introduce here. It is a generalization of split graphs.

Definition 2.6 We say a graph is tri-split if and only if its set of vertices can be partitioned

into three disjoint sets A 6= ∅, B and C with the following properties

∀u ∈ A ∀v ∈ A ∪ C : uv ∈ E(G),

∀u ∈ B ∀v ∈ B ∪ C : uv /∈ E(G).

We prove the following.

Theorem 2.7 Connected tri-split graphs are no-minus graphs.

Proof: Let G be a tri-split graph with the corresponding partition (A,B,C), let S ⊆ V (G)

be a subset of dominated vertices, and consider the game played on G|S. If the game on G|S
ends in at most two moves, then clearly γg(G|S) ≤ γ′g(G|S). From now on, we assume that

γg(G|S) ≥ 3.

Observe that Dominator has an optimal strategy playing only in A (in both Game 1 and

Game 2). Indeed, any vertex u in B dominates only itself and some vertex in A (at least one by

connectivity). Any neighbor v of u in A dominates all of A and v, so is a better move than u

for Dominator by the continuation principle. Similarly, the neighborhood of any vertex in C is

included in the neighborhood of any vertex in A. So we now assume Dominator plays only in A

in the rest of the proof. Though we do not need it, a similar argument using the continuation

principle would also allow us to observe that Staller has an optimal strategy where she plays

only vertices in B ∪ C.

Suppose we know an optimal strategy for Dominator in Game 2. We propose a (imagination)

strategy for Game 1 guaranteeing it will finish no later than Game 2. Let Dominator imagine

a first move v0 ∈ B ∪ C by Staller (not necessarily optimal) and play the game on G|S as if

playing in G|(S∪N [v0]). Staller plays Game 1 optimally on G|S not knowing about Dominator’s

imagined game. Note that after Dominator’s first move, the only difference between the imagined

game and the real game is that v0 is dominated in the first but possibly not in the second. Indeed,

all the neighbors of v0 belong to A ∪ C, which are dominated by Dominator’s first move (in A

by our assumption). Therefore, any move played by Dominator in his imagined game is legal in

the real game, though Staller may eventually play a move in the real game that is illegal in the

imagined game, provided it newly dominates only v0. If she does so and the game is not finished

yet, then Dominator imagines she played any legal move v1 in B instead and continues. This

may happen again, leading Dominator to imagine a move v2 and so on. Denote by vi the last

such vertex before the game ends, we thus have that vi is the only vertex possibly dominated

in the imagined game but not in the real game.

Assume now that the imagined game is just finished. Denote by kI the total number of moves

in this imagined game. Note that the imagined game looks like a Game 2 where Dominator

played optimally but possibly not Staller. We thus have that kI ≤ γ′g(G|S). At that point,

either the real game is finished or only vi is not yet dominated. So the real game finishes

at latest with the next move of any player, and the number of moves in the real game kR
satisfies kR ≤ kI − 1 + 1. Moreover, in the real game, Staller played optimally but possibly
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not Dominator, so kR ≥ γg(G|S). We now can conclude the proof bringing together all these

inequalities into

γg(G|S) ≤ kR ≤ kI ≤ γ′g(G|S) .

The second family of graphs we prove to be no-minus is the family of dually chordal graphs,

see [3]. Let G be a graph and v one of its vertices. A vertex u ∈ N [v] is a maximum neighbor

of v if for all w ∈ N [v], we have N [w] ⊆ N [u] (i.e. N [u] contains all vertices at distance at most

2 from v). A vertex ordering v1, . . . , vn is a maximum neighborhood ordering if for each i ≤ n,

vi has a maximum neighbor in Gi = G[{v1, . . . , vi}], the induced subgraph of G on the set of

vertices {v1, . . . , vi}. A graph is dually chordal if it has a maximum neighborhood ordering.

Note that forests and interval graphs are dually chordal. We first need a little statement on

maximal neighborhood orderings that will prove useful later on.

Lemma 2.8 Let G be a dually chordal graph. There exists a maximum neighborhood ordering

v1, . . . , vn of G such that if vi’s only maximum neighbor in Gi = G[{v1, . . . , vi}] is itself, then

vi is isolated in Gi.

Proof: Let G be a dually chordal graph and consider v1, . . . , vn a maximum neighborhood

ordering of G with a minimum number of vertices vi non isolated in Gi but whose only maximum

neighbor is itself. If there are no such vertices, we are done. Suppose by way of contradiction

that there are some, and let vk be such a vertex of maximum index.

We first observe that in Gk, there are no vertices at distance 2 from vk. Indeed, if a vertex u

in Gk is adjacent to both vk and another vertex u′, then by definition of a maximum neighbor,

vk is also adjacent to u′. So vk is adjacent to all the vertices in its component. Now we claim

that the ordering vk, v1, . . . , vk−1, vk+1, . . . , vn is also a maximum neighborhood ordering of G.

All vertices vi where i > k, and all vertices of index less than k but not in the component of

vk in Gk have the same vertex as a maximum neighbor. The vertex vk itself can be chosen as

the maximum neighbor of all vertices of index less than k which are in vk’s component in Gk.

Let vi be a vertex who is its only maximum neighbor in the new ordering. Necessarily, vi was

already its only maximum neighbor in the initial ordering. Also, unless vi was in the component

of vk in Gk, the neighborhood of vi in Gi has not changed. Nevertheless, vk itself used to be its

own maximum neighbor and to be non isolated in Gk, but now is isolated. So this new ordering

w1, . . . , wn contains less vertices wi non isolated in G[{w1, . . . , wi}] but whose only maximum

neighbor is itself. This contradicts our initial choice of the ordering.

Theorem 2.9 Dually chordal graphs are no-minus graphs.

Proof: We prove the result by induction on the number of non-dominated vertices. Let G be

a dually chordal graph with v1, . . . , vn a maximum neighborhood ordering of V (G) where no

vertex vi is its own maximum neighbor unless vi is isolated in Gi. Let S ⊆ V (G) be a subset

of dominated vertices and denote by j the largest index such that vj is not in S. We suppose

by way of contradiction that G|S is a (k,−), and note that necessarily k ≥ 3. Let vi be a

maximum neighbor of vj in Gj . Let u be an optimal move for Staller in G|(S ∪N [vi]) and let

X = S ∪N [vi]∪N [u]. By Observation 2.5, G|(S ∪N [u]) and G|(S ∪N [vi]) are both (k− 2,+),

so γg(G|(S ∪N [u)) = k − 2 and γ′g(G|(S ∪N [vi])) = k − 1. By optimality of u, we get that

k − 1 = γ′g(G|(S ∪N [vi])) = γg(G|X) + 1 .
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Let v` be a vertex adjacent to vj , we prove by induction on ` that N [v`] ⊂ (S ∪ N [vi]). If

` ≤ j, then vi being a maximum neighbor of vj in Gj , vertices adjacent to v` are either in N [vi]

or have index larger than j and thus are in S, and the claim is true. Assume now ` > j. Let vm
be a maximum neighbor of v` in G` with smallest index. Since v` is not isolated in G`, m < `.

Since vj is adjacent to v` and j ≤ `, vj is adjacent to vm. Then by induction, N [vm] ⊂ S∪N [vi].

Hence all neighbors v`′ of v` with `′ ≤ ` are in N [vm] ⊂ S ∪ N [vi] and vertices v`′ with `′ > `

are in S, and finally N [v`] ⊂ (S ∪N [vi]).

This implies that the vertex u is not a neighbor of vj , otherwise playing u would not be legal

in G|(S ∪N [vi]). Therefore, by continuation principle (Theorem 1.2),

γg(G|(S ∪N [u])) ≥ γg(G|(X \ {vj})) .

Moreover, because all vertices at distance at most two from vj are dominated in G|X, we get

that γg(G|(X \ {vj})) = γg((G∪K1)|X). Now using induction hypothesis to apply Lemma 2.4,

we get

γg(G|(X \ {vj})) ≥ γg(G|X) + 1 .

We thus conclude that

k − 2 = γg(G|(S ∪N [u])) ≥ γg(G|(X \ {vj})) ≥ γg(G|X) + 1 = k − 1,

which leads to a contradiction. Therefore, G|S is not in minus and this concludes the proof.

2.3 Realizations by unions of two no-minus graphs

In this section, we are interested in the possible values that the union of two no-minus graphs

may realize, according to the realizations of the components. We in particular show that the

union of two no-minus graphs is always also no-minus.

We first prove a very general result that will allow us to compute most of the bounds obtained

later.

Theorem 2.10 Let G1|S1 and G2|S2 be two partially dominated graphs and x be any legal move

in G1|S1. We have

γg((G1 ∪G2)|(S1 ∪ S2)) ≥ min
(
γg(G1|S1) + γdpg (G2|S2), γdpg (G1|S1) + γg(G2|S2)

)
, (1)

γg((G1 ∪G2)|(S1 ∪ S2)) ≤ 1 + max

(
γ′g(G1|(S1 ∪N [x])) + γ′spg (G2|S2)

γ′spg (G1|(S1 ∪N [x])) + γ′g(G2|S2)

)
, (2)

γ′g((G1 ∪G2)|(S1 ∪ S2)) ≤ max
(
γ′g(G1|S1) + γ′spg (G2|S2), γ′spg (G1|S1) + γ′g(G2|S2)

)
, (3)

γ′g((G1 ∪G2)|(S1 ∪ S2)) ≥ 1 + min

(
γg(G1|(S1 ∪N [x])) + γdpg (G2|S2)

γdpg (G1|(S1 ∪N [x])) + γg(G2|S2)

)
. (4)

Proof: To prove all these bounds, we simply describe what a player can do by using a strategy

of following, i.e. always answering to his opponent’s moves in the same graph if possible.

Let us first consider Game 1 in G1 ∪ G2|S1 ∪ S2 and what happens when Staller adopts

the strategy of following. Assume first that the game in G1 finishes before the game in G2.

Then Staller can ensure with her strategy that the number of moves in G1 is at least γg(G1|S1).

However, when G1 finishes, Staller may be forced to play in G2 if Dominator played the final

move in G1. This situation somehow allows Dominator to pass once in G2, but no more. So

Staller can ensure that the number of moves in G2 is no less than γdpg (G2|S2). Thus, in that
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case, the total number of moves is no less than γg(G1|S1) + γdpg (G2|S2). If on the other hand

the game in G2 finishes first, we similarly get that the number of moves is then no less than

γdpg (G1|S1)+γg(G2|S2). Since she does not decide which game finishes first, Staller can guarantee

that

γg((G1 ∪G2)|(S1 ∪ S2)) ≥ min
(
γg(G1|S1) + γdpg (G2|S2), γdpg (G1|S1) + γg(G2|S2)

)
.

The same arguments with Dominator adopting the strategy of following in Game 2 ensure that

γ′g(G1 ∪G2|S1 ∪ S2) ≤ max
(
γ′g(G1|S1) + γ′spg (G2|S2), γ′spg (G1|S1) + γ′g(G2|S2)

)
.

Let us come back to Game 1. Suppose Dominator plays some vertex x ∈ V (G1) and then

adopts the strategy of following. Then he can ensure that γg((G1∪G2)|(S1∪S2)) ≤ 1+γ′g((G1∪
G2)|(S1 ∪ S2 ∪N [x])) and thus

γg((G1 ∪G2)|(S1 ∪ S2)) ≤ 1 + max

(
γ′g(G1|(S1 ∪N [x])) + γ′spg (G2|S2),

γ′spg (G1|(S1 ∪N [x])) + γ′g(G2|S2)

)
.

The same is true for Staller in Game 2 and gives Inequality (4).

In the case of the union of two no-minus graphs, these inequalities allow us to give rather

precise bounds on the possible values realized by the union. The first case is when one of the

components is in equal.

Theorem 2.11 Let G1|S1 and G2|S2 be partially dominated no-minus graphs. If G1|S1 is a

(k,=) and G2|S2 is a (`, ?) (with ? ∈ {=,+}), then the disjoint union (G1 ∪ G2)|(S1 ∪ S2) is

(k + `, ?).

Proof: We use inequalities from Theorem 2.10. Note that since G1 and G2 are no-minus

graphs, we can apply Proposition 2.3 and get that the Staller-pass and Dominator-pass game

number of any partially dominated graph are the same as the corresponding non-pass game

numbers.

For Game 1, let Dominator choose an optimal move x in G2|S2, for which we get γ′g(G2|(S2∪
N [x])) = `− 1. Applying Inequalities (1) and (2) interchanging the role of G1 and G2, we then

get that

k + ` ≤ γg(G1 ∪G2|S1 ∪ S2) ≤ 1 + k + `− 1 .

For Game 2, Staller can also choose an optimal move x in G2|S2 for which γg(G2|S2 ∪N [x]) =

γ′g(G2|S2) − 1, and applying Inequalities (3) and (4), we get that γ′g((G1 ∪ G2)|(S1 ∪ S2)) =

γ′g(G1|S1) + γ′g(G2|S2). This proves that (G1 ∪G2)|(S1 ∪ S2) is indeed a (k + `, ?).

In the second case, when both of the components are in plus we prove the following assertion.

Theorem 2.12 Let G1|S1 and G2|S2 be partially dominated no-minus graphs such that G1|S1

is (k,+) and G2|S2 is (`,+). Then

k + ` ≤ γg((G1 ∪G2)|(S1 ∪ S2)) ≤ k + `+ 1,

k + `+ 1 ≤ γ′g((G1 ∪G2)|(S1 ∪ S2)) ≤ k + `+ 2.

In addition, all bounds are tight.
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d

e

b

T4 P3

f

leg

Figure 1: The trees T3 and T4, the graph P3 and the leg

Proof: Similarly as in the proof before, taking x as an optimal first move for Dominator in

G1|S1 and applying Inequalities (1) and (2), we get that k+` ≤ γg((G1∪G2)|(S1∪S2)) ≤ k+`+1.

Also, taking x as an optimal first move for Staller in G1|S1 and applying Inequalities (3) and

(4), we get that k + `+ 1 ≤ γ′g((G1 ∪G2)|(S1 ∪ S2)) ≤ k + `+ 2.

We now propose examples showing that these bounds are tight. Denote by Ti the tree made

of a root vertex r of degree i+1 adjacent to two leaves and i−1 paths of length 2. Figure 1 shows

the trees T3 and T4. Note that the domination number of Ti is γ(Ti) = i. For the domination

game, Ti realizes (i, i+ 1). We claim that for any k, `, γg(Tk ∪T`) = k+ `+ 1. Note that if x is a

leaf adjacent to the degree i+ 1 vertex r in some Ti, then i vertices are still needed to dominate

Ti|N [x]. Then a strategy for Staller so that the game does not finish in less than k + ` + 1

moves is to answer any move from Dominator in the other tree by choosing such a leaf (e.g. in

Figure 1, answer to Dominator’s move on a with b). Then two moves are played already and

still k + `− 1 vertices at least are needed to dominate the graph.

Similarly, if k ≥ 2, for any `, γ′g(Tk ∪ T`) = k + ` + 2. Staller’s strategy would be to start

on a leaf adjacent to the root of Tk (e.g. b in Figure 1). Then whatever is Dominator’s answer

(optimally a), Staller can play a second leaf adjacent to a root (d). Then either Dominator

answers to the second root (c) and at least k + `− 2 moves are required to dominate the other

vertices, or he tries to dominate a leaf already (say e) and Staller can still play the root (c),

leaving k+`−3 necessary moves after the five initial moves. Observe that this value of γ′g(Tk∪T`)
actually implies the value of γg(Tk ∪ T`) by the previous bounds and Theorem 1.1.

To prove that the lower bounds are tight, it is enough to consider the path on three vertices

P3 and the leg drawn in Figure 1. The leg is the tree consisting of a claw whose degree three

vertex is attached to a P3. The path P3 realizes (1, 2) and the leg realizes (3, 4). Checking that

the union is indeed a (4, 5) is left to the reader. By replacing the path P3 = T1 by the graph Tk,

and attaching `− 3 paths of length two to the vertex f in the leg, we get a general construction

tightening the lower bounds of Theorem 2.12 for any k ≥ 1 and ` ≥ 3.

The next corollary directly follows from the above theorems.

Corollary 2.13 No-minus graphs are closed under disjoint union.

Note also that thanks to Corollary 2.13, we can extend the result of Theorem 2.7 to all

tri-split graphs.

Corollary 2.14 All tri-split graphs are no-minus graphs.

3 General case

In this section, we consider the unions of any two graphs. Depending on the parity of the length

of the game, we can refine Theorem 2.10 as follows:
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Theorem 3.1 Let G1|S1 and G2|S2 be partially dominated graphs.

• If γg(G1|S1) and γg(G2|S2) are both even, then

γg((G1 ∪G2)|(S1 ∪ S2)) ≥ γg(G1|S1) + γg(G2|S2) (5)

• If γg(G1|S1) is odd and γ′g(G2|S2) is even, then

γg((G1 ∪G2)|(S1 ∪ S2)) ≤ γg(G1|S1) + γ′g(G2|S2) (6)

• If γ′g(G1|S1) and γ′g(G2|S2) are both even, then

γ′g((G1 ∪G2)|(S1 ∪ S2)) ≤ γ′g(G1|S1) + γ′g(G2|S2) (7)

• If γ′g(G1|S1) is odd and γg(G2|S2) is even, then

γ′g((G1 ∪G2)|(S1 ∪ S2)) ≥ γ′g(G1|S1) + γg(G2|S2) (8)

Proof: The proof is similar to the proof of Theorem 2.10. For inequality (5), let Staller use

the strategy of following, assume without loss of generality that G1 is dominated before G2. If

Dominator played optimally in G1, by parity Staller played the last move there and Dominator

could not pass a move in G2, thus he could not manage less moves in G2 than γg(G2|S2). Yet

Dominator may have played so that one more move was necessary in G1 in order to be able

to pass in G2. Then the number of moves played in G2 may be only γdpg (G2|S2), but this

is no less than γg(G2|S2) − 1 and overall, the number of moves is the same. Hence we have

γg((G1 ∪G2)|(S1 ∪ S2)) ≥ γg(G1|S1) + γg(G2|S2). The same argument with Dominator using

the strategy of following gives inequality (7).

Similarly, for inequality (6), Let Dominator start with playing an optimal move x in G1|S1

and then apply the strategy of following. Then Staller plays in (G1 ∪ G2)|((S1 ∪ N [x]) ∪ S2),

where γ′g(G1|(S1 ∪N [x])) = γg(G1|S1)− 1 is even, as well as γ′g(G2|S2). Then by the previous

argument, γg((G1 ∪G2)|(S1 ∪ S2)) ≤ γg(G1|S1) + γ′g(G2|S2). Inequality (8) is obtained with a

similar strategy for Staller.

Using Theorem 2.10 and 3.1, we argue the 21 different cases, according to the type and the

parity of each of the components of the union. To simplify the computation, we simply propose

the following corollary of Theorem 2.10

Corollary 3.2 Let G1|S1 and G2|S2 be two partially dominated graphs. We have

γg((G1 ∪G2)|(S1 ∪ S2)) ≥ γg(G1|S1) + γg(G2|S2)− 1 , (9)

γg((G1 ∪G2)|(S1 ∪ S2)) ≤ γg(G1|S1) + γ′g(G2|S2) + 1 , (10)

γ′g((G1 ∪G2)|(S1 ∪ S2)) ≤ γ′g(G1|S1) + γ′g(G2|S2) + 1 , (11)

γ′g((G1 ∪G2)|(S1 ∪ S2)) ≥ γ′g(G1|S1) + γg(G2|S2)− 1 . (12)

Proof: To prove these inequalities, we simply apply inequalities of Theorem 2.10 in a general

case. We choose for the vertex x an optimal move, getting for example that γ′g(G1|(S1∪N [x])) =

γg(G1|S1)− 1. We also use Lemma 2.2 and get for example γdpg (G2|S2) ≥ γg(G2|S2)− 1.

We now present the general bounds in Table 1, which should be read as follows. The first two

columns give the types and parities of the components of the union, where e, e1 and e2 denote
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G1 G2 γg γ′g for γg for γ′g

(o1,−) (o2,+) γg = o1 + o2 − 1 γ′g = o1 + o2 (9),(6*) (12*),(7)

(e1,−) (e2,+) γg = e1 + e2 γ′g = e1 + e2 + 1 (5),(10*) (8*),(11)

(o1,−) (o2,−) γg = o1 + o2 − 1 γ′g = o1 + o2 − 2 (9),(6) (12),(7)

(e1,−) (e2,−) γg = e1 + e2 γ′g = e1 + e2 − 1 (5),(10) (8),(11)

(o1,=) (o2,−) γg = o1 + o2 − 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 (9),(6) (12),(11)

(e1,=) (e2,−) γg = e1 + e2 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5),(10) (12),(11)

(e,=) (o,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o− 1 (9),(10) (12),(7)

(o,=) (e,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o (9),(10) (8),(11)

(e,=) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (9),(6*) (12*),(11)

(o,−) (e,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (9),(10*) (12*),(11)

(e,−) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (9),(10*) (12*),(11)

(e,=) (o,=) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (9),(6*) (8*),(11)

(o,−) (e,−) e+ o− 1 ≤ γg ≤ e+ o e+ o− 2 ≤ γ′g ≤ e+ o− 1 (9),(10) (12),(11)

(e1,=) (e2,=) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5),(10) (12),(7)

(e1,=) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 2 (5),(10*) (8*),(11)

(o,=) (e,+) e+ o− 1 ≤ γg ≤ e+ o+ 1 e+ o ≤ γ′g ≤ e+ o+ 2 (9),(10*) (8),(11)

(o1,+) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (9),(6) (12),(7)

(e1,+) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 2 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 3 (5),(10) (8),(11)

(o1,=) (o2,=) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 + 1 (9),(10) (12),(11)

(o1,=) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (9),(10*) (12*),(11)

(e,+) (o,+) e+ o− 1 ≤ γg ≤ e+ o+ 2 e+ o ≤ γ′g ≤ e+ o+ 3 (9),(10) (12),(11)

Table 1: Bounds for general graphs.

even numbers and o, o1, and o2 denote odd numbers. The next two columns give the bounds on

the game domination numbers of the union. In the last two columns, we give the inequalities

we use to get these bounds. We add a ∗ to an inequality number when the inequality is used

exchanging roles of G1 and G2.

Theorem 3.3 The bounds from Table 1 hold. In particular, we have:

γg(G1 ∪G2)− (γg(G1) + γg(G2)) ∈ {−1, 0, 1, 2}
γ′g(G1 ∪G2)− (γ′g(G1) + γ′g(G2)) ∈ {−2,−1, 0, 1}

and all these values are reached.

Note that the entries in Table 1 are sorted by increasing number of different possibilities. In

all cases but four, we attained the bounds of Table 1, examples reaching the bounds are given

in Table 2 using graphs of Figure 2 or described below. The symbol � stands for the Cartesian

product of graphs and here is considered having priority on the union (so P2 �P4∪P3 is actually

(P2 �P4) ∪ P3), it is actually used only for this graph P2 �P4.

Remark that to tighten many of these bounds involving graphs in plus and equal, the

examples given cannot be no-minus, for consistency with Theorems 2.11 and 2.12. The graphs

used in that cases all contain either an induced C6 (which is (3,−)) or P2 �P4 (which is (4,−)).

The realizations of the examples given were computer checked.

• P4 is (2,=)

• BLP = P2 �P4 ∪ P3 is (4,+)

• BLC = P2 �P4 ∪ C6 is (6,=)
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PC : (5,+) PCs : (3,+) sp : (4,=)

NE : (6,=) NEsp : (5,=)

CPP : (7,=)

W : (3,+) P2�P4 : (4,−)

BG : (7,=)

Figure 2: The graphs used in Table 2
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G1 G2 lower on γg upper on γg lower on γ′g upper on γ′g

(o1,−) (o2,+) C6 ∪ P3 C6 ∪ P3 C6 ∪ P3 C6 ∪ P3

(e1,−) (e2,+) P2 �P4 ∪ T2 P2 �P4 ∪ T2 P2 �P4 ∪ T2 P2 �P4 ∪ T2
(o1,−) (o2,−) C6 ∪ C6 C6 ∪ C6 C6 ∪ C6 C6 ∪ C6

(e1,−) (e2,−) P2 �P4 ∪ P2 �P4 P2 �P4 ∪ P2 �P4 P2 �P4 ∪ P2 �P4 P2 �P4 ∪ P2 �P4

(o1,=) (o2,−) K1 ∪ C6 K1 ∪ C6 ? K1 ∪ C6

(e1,=) (e2,−) P8 ∪ P2 �P4 sp ∪ P2 �P4 P8 ∪ P2 �P4 sp ∪ P2 �P4

(e,=) (o,−) NE ∪ C6 P8 ∪ C6 P8 ∪ C6 P8 ∪ C6

(o,=) (e,−) P10 ∪ P2 �P4 BG ∪ P2 �P4 P10 ∪ P2 �P4 P10 ∪ P2 �P4

(e,=) (o,+) NE ∪W P4 ∪ T3 NE ∪W P4 ∪ T3
(o,−) (e,+) C6 ∪BLPK C6 ∪ T4 C6 ∪BLPK C6 ∪ T4
(e,−) (o,+) P2 �P4 ∪ P11 P2 �P4 ∪ PCs P2 �P4 ∪ P11 P2 �P4 ∪ PCs
(e,=) (o,=) NE ∪ P6 sp ∪BLCK NE ∪ P6 sp ∪BLCK
(o,−) (e,−) C6 ∪ (3P2 �P4) (3C6) ∪ P2 �P4 C6 ∪ (3P2 �P4) (3C6) ∪ P2 �P4

(e1,=) (e2,=) NE ∪NE sp ∪ sp ? sp ∪ sp
(e1,=) (e2,+) P4 ∪ T4 sp ∪ T4 P4 ∪ T4 sp ∪ T4
(o,=) (e,+) CPP ∪BLPK K1 ∪BLP CPP ∪BLPK K1 ∪BLP
(o1,+) (o2,+) PC ∪ PC T5 ∪ T5 PC ∪ PC T5 ∪ T5
(e1,+) (e2,+) BLPK ∪BLPK BLP ∪BLP BLPK ∪BLPK BLP ∪BLP
(o1,=) (o2,=) CPP ∪ CPP ? ? NEsp ∪NEsp
(o1,=) (o2,+) BLCK ∪ PC BLCK ∪ PCs BLCK ∪ PC BLCK ∪ PCs
(e,+) (o,+) BLWK ∪ PC T4 ∪ (C6 ∪ P3) BLWK ∪ PC T4 ∪ (C6 ∪ P3)

Table 2: Examples of graphs reaching bounds of Table 1.

• BLCK = P2 �P4 ∪ C6 ∪K1 is (7,=)

• BLPK = P2 �P4 ∪ P3 ∪K1 is (6,+)

• BLWK = P2 �P4 ∪W ∪K1 is (8,+)
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