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Résumé v

Jeux ombinatoires dans les graphes

Résumé : Dans ette thèse, nous étudions les jeux ombinatoires sous

di�érentes ontraintes. Un jeu ombinatoire est un jeu à deux joueurs, sans

hasard, ave information omplète et �ni aylique. D'abord, nous regardons

les jeux impartiaux en version normale, en partiulier les jeux VertexNim

et Timber. Puis nous onsidérons les jeux partisans en version normale, où

nous prouvons des résultats sur les jeux Timbush, Toppling Dominoes

et Col. Ensuite, nous examinons es jeux en version misère, et étudions

les jeux misères modulo l'univers des jeux diots et modulo l'univers des

jeux dead-endings. En�n, nous parlons du jeu de domination qui, s'il n'est

pas ombinatoire, peut être étudié en utilisant des outils de théorie des jeux

ombinatoires.

Mots-lés : jeux ombinatoires, graphes, jeux impartiaux,

jeux partisans, version normale, version misère, jeu de domi-

nation



vi Abstrat

Combinatorial games on graphs

Abstrat: In this thesis, we study ombinatorial games under di�erent

onventions. A ombinatorial game is a �nite ayli two-player game with

omplete information and no hane. First, we look at impartial games

in normal play and in partiular at the games VertexNim and Timber.

Then, we onsider partizan games in normal play, with results on the games

Timbush, Toppling Dominoes and Col. Next, we look at all these games

in misère play, and study misère games modulo the diot universe and modulo

the dead-ending universe. Finally, we talk about the domination game whih,

despite not being a ombinatorial game, may be studied with ombinatorial

games theory tools.

Keywords: ombinatorial games, graphs, impartial games,

partizan games, normal onvention, misère onvention, dom-

ination game
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Chapter 1. Introdution 1

Chapter 1

Introdution

Combinatorial games are games of pure strategy, loser to Chekers,

Chess or Go than to Dominion, League of Legends, or Rugby. They are

games satisfying some onstraints insuring a player has a winning strategy.

Our goal here is to �nd whih player it is, and even the strategy if possible.

There exist other game theories, suh as eonomi game theory, where

there might be several players, who are allowed to play their moves at the

same time. There, the players' `best' strategies are often probabilisti, that

is for example a player would deide to play the move A with probability

0.3, the move B with probability 0.5, and the move C with probability 0.2,
beause they do not know what their opponent might do and eah of these

moves might be better than the other depending on the opponent's move. In

ombinatorial game, this does not happen, the `winning' player always has

a deterministi winning strategy.

The �rst paper in ombinatorial game theory was published in 1902 by

Bouton [5℄, who solved the game of Nim, game that would beome the ref-

erene in impartial games thanks to the theory developed independently by

Grundy and Sprague in the 30s. For a few deades, researhers studied the

games where both players have the same moves and are only distinguished by

who plays �rst, games we all impartial. In the late 70s, Berlekamp, Conway

and Guy developed the theory of partizan games, where the two players may

have di�erent moves. These games introdue many more possibilities, as for

example a player might have a winning strategy whoever starts playing. The

omplexity of determining the winner of a ombinatorial game was also on-

sidered, ranging from polynomial problems to exptime-omplete problems.

Another topi in ombinatorial game theory that has interested researhers

is the misère version of a game, that is the game where the winning on-

dition is reversed. These games were not well understood, mainly beause

when they deompose, it is harder to put together the separate analysis of

the omponents, until Plambek and Siegel proposed a way to make it sim-

pler in the beginning of the 21st entury. Referenes about the topi inlude
the books Winning Ways [4℄ and On Numbers and Games [10℄, and other

books that were published more reently, suh as Lessons in Play [1℄, Games,

Puzzles, & Computation [11℄ and Combinatorial Game Theory [39℄.

Graph theory is more anient, Euler was already looking at it in the 18th

entury. A graph is a mathematial objet that an be used to represent any

kind of network, suh as omputer networks, road networks, soial networks,
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or neural networks.

Natural questions that arise on these networks an be translated under a

graph formalism. Among lassi graph problems, one an mention olouring

and domination. These problems admit variants that are two-player games,

where the players may build an answer to the original problem.

In this thesis, we study ombinatorial games, mostly games played on

graphs. We �rst give some basi de�nitions on games and graphs, before

presenting our results on games. We start with impartial games before going

to partizan games and ontinuing with games in misère play. We end with

a game that is not ombinatorial but is more like a graph parameter.

1.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Combinatorial Games . . . . . . . . . . . . . . . . 2

1.1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 De�nitions

1.1.1 Combinatorial Games

A ombinatorial game is a �nite two-player game with perfet information

and no hane. The players, alled Left and Right, alternate moves until one

player has no available move. Under the normal onvention, the last player

to move wins the game. Under the misère onvention, that same player loses

the game. By onvention, Left is a female player whereas Right is a male

player.

A position of a game an be de�ned reursively by its sets of options

G = {GL|GR}, where GL
is the set of positions reahable in one move by

Left (alled Left options), and GR
the set of positions reahable in one move

by Right (alled Right options). The word game an be used to refer to a

set of rules, as well as to a spei� position as just desribed. A follower of

a game is a game that an be reahed after a suession of (not neessarily

alternating) Left and Right moves. The zero game 0 = {·|·}, is the game

with no option (the dot indiates an empty set of options). The birthday of a

game is de�ned reursively as one plus the maximum birthday of its options,

with 0 being the only game with birthday 0. We say a game G is born on

day n if its birthday is n and that it is born by day n if its birthday is at

most n. The games born on day 1 are {0|·} = 1, {·|0} = 1 and {0|0} = ∗.
The games born by day 1 are the same with the addition of 0. A game G is
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0 1 1 ∗

Figure 1.1: Game trees of games born by day 1.

said to be simpler than a game H if the birthday of G is smaller than the

birthday of H.

A game an also be depited by its game tree, where the game trees of

its options are linked to the root by downward edges, left-slanted for Left

options and right-slanted for Right options. For instane, the game trees of

games born by day 1 are depited on Figure 1.1.

When the Left and Right options of a game are always the same and that

property is true for any follower of the game, we say the game is impartial.

Otherwise, we say it is partizan.

Given two games G = {GL|GR} and H = {HL|HR}, we reursively

de�ne the (disjuntive) sum of G and H as G + H = {GL + H,G +
HL|GR + H,G + HR} (where GL + H is the set of sums of H and an

element of GL
), i.e. the game where eah player hooses on their turn

whih one of G and H to play on. We write {GL1 · · ·GLk |GR1 · · ·GRℓ} for

{{GL1 · · ·GLk}|{GR1 · · ·GRℓ}} to simplify the notation. We denote by GL

any Left option of G, and by GR
any of its Right options. The onjugate G

of a game G is de�ned reursively by G = {GR|GL} (where GR
is the set of

onjugates of elements of GR
), that is the game where Left and Right would

have swithed their roles.

For both onventions, there are four possible outomes for a game. Games

for whih Left has a winning strategy whatever Right does and whoever plays

�rst have outome L (for left). Similarly, N , P and R (for next, previous and

right) denote respetively the outomes of games for whih the �rst player,

the seond player, and Right has a winning strategy. We note o+(G) the

normal outome of a game G i.e. its outome under the normal onvention

and o−(G) the misère outome ofG. We also say for any outome O, G ∈ O+

or G is a (normal) O-position whenever o+(G) = O, and H ∈ O−
or H is

a (misère) O-position when o−(H) = O. Outomes are partially ordered

aording to Figure 1.2, with greater games being more advantageous for

Left. Note that there is no general relationship between the normal outome

and the misère outome of a game.

Given two games G and H, we say that G is greater than or equal to H
in normal play whenever Left prefers the game G rather than the game H in

any sum, that is G >+ H if for every game X, o+(G+X) > o+(H+X). We

say that G and H are equivalent in normal play, denoted G ≡+ H, when for

every game X, o+(G +X) = o+(H +X) (i.e. G >+ H and H >+ G). We

also say that G is (stritly) greater than H in normal play if G is greater than
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L

N P

R

Figure 1.2: Partial ordering of outomes

or equal to H but G and H are not equivalent, that is G >+ H if G >+ H
and G 6≡+ H. We say that G and H are inomparable in normal play if

none is greater than or equal to the other, that is G �

+ H if G �+ H and

H �+ G. Inequality, equivalene and inomparability are de�ned similarly

under misère onvention, using supersript − instead of +. We reserved the

symbol = for equality between game trees, when used between games.

For normal play, there exist other haraterisations for heking inequal-

ity:

G >
+ H ⇔ G+H ∈ P+ ∪ L+

⇔ (∀GR ∈ GR, GR 
 H) ∧ (∀HL ∈ HL, G 
 HL).

The last haraterisation was atually the original de�nition given by Conway

in [10℄. The seond one tells us that for any games G and H, if G and H are

equivalent in normal play, then the sum of G and the onjugate of H is a

normal P-position and, as G is equivalent to itself, G+G is always a normal

P-position, whih is atually easy to prove by mimiking the �rst player's

move as the seond player.

In normal play, �nding the outome of a game is the same as �nding how

it is ompared to 0:





G is a P-position if G ≡+ 0 : G is zero

G is an L-position if G >+ 0 : G is positive

G is an R-position if G <+ 0 : G is negative

G is an N -position if G �

+ 0 : G is fuzzy

For example, 0 is zero, 1 is positive, 1 is negative, and ∗ is fuzzy.

As G +G ≡+ 0 for any game G, we all the onjugate of a game G the

negative of G and denote it −G in normal play.

We remind the reader that the order is only partial, in both onventions,

and many pairs of games are inomparable, suh as 0 and ∗.
Siegel showed [38℄ that if two games are omparable in misère play, they

are omparable in normal play as well, in the same order, namely:

Theorem 1.1 (Siegel [38℄) If G >− H, then G >+ H.
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However, the onverse in not true, as {∗|∗} ≡+ 0 and {∗|∗} �− 0.

Some options are onsidered irrelevant, either beause there is a better

move or beause the answer of the opponent is `preditable'. We give here

the de�nition of these options, omitting the supersripts + and −, as they
are de�ned the same way for normal play and misère play.

De�nition 1.2 (dominated and reversible options)

Let G be a game.

(a) A Left option GL
is dominated by some other Left option GL′

if

GL′

> GL
.

(b) A Right option GR
is dominated by some other Right option GR′

if

GR′

6 GR
.

() A Left option GL
is reversible through some Right option GLR

if

GLR 6 G.

(d) A Right option GR
is reversible through some Left option GRL

if

GRL > G.

In both normal and misère play, a game is said to be in anonial form

if none of its options is dominated or reversible and all its options are in

anonial form, and every game is equivalent to a single game in anonial

form [4, 10, 38℄. To get to this anonial form, one may use two di�erent

operations orresponding to the status of the option they want to get rid of:

• Whenever GL1
is dominated, removing GL1

leaves an equivalent game:

G ≡ {GL \ {GL1}|GR}
• Whenever GR1

is dominated, removing GR1
leaves an equivalent game:

G ≡ {GL|GR \ {GR1}}
• Whenever GL1

is reversible through GL1R1
, bypassing GL1

leaves an

equivalent game: G ≡ {(GL \ {GL1}) ∪GL1R1L|GR}
• Whenever GR1

is reversible through GR1L1
, bypassing GR1

leaves an

equivalent game: G ≡ {GL|(GR \ {GR1}) ∪GR1L1R}

Theorem 1.1 implies that if an option is dominated (resp. reversible) in

misère play, it is also dominated (resp. reversible) in normal play. Again,

the onverse is not true: in {{∗|∗}, 0|{∗|∗}, 0}, all options are dominated in

normal play, but none is dominated in misère play; in {∗|∗}, both options are

reversible in normal play, but none is reversible in misère play. This implies

that the normal anonial form of a game and its misère anonial form may

be di�erent: {∗|∗} is in misère anonial form, whereas its normal anonial

form is 0.
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a b
c

d e f

Figure 1.3: The undireted graph with

vertex set {a, b, c, d, e, f} and edge set

{(a, d), (b, c), (b, e), (b, f), (e, f)}

a b
c

d e f

Figure 1.4: The direted graph with

vertex set {a, b, c, d, e, f} and ar set

{(a, b), (c, b), (c, f), (e, d), (f, c)}

1.1.2 Graphs

A graph G onsists of a set of verties V (G) and a multiset of edges E(G)
representing a symmetri binary relation between the verties. As the re-

lation is symmetri, the edge between two verties u and v will be repre-

sented by (u, v) or (v, u) and the multipliity of the edge between u and

v is the sum of the multipliity of these edges in the multiset E(G). We

say a graph is simple if the relation represented by E(G) is irre�exive and

E(G) is a set, that is if no vertex is in relation with itself and the mul-

tipliity of eah edge is (0 or) 1. A direted graph G is a generalisation

of a graph, suh that the relation represented by E(G) no longer needs to

be symmetri. We sometimes note A(G) rather than E(G) when G is a

direted graph, and we all direted edges or ars the elements of A(G).
The underlying undireted graph und(G) of a direted graph G is the graph

obtained by onsidering ars as edges, that is V (und(G)) = V (G) and

E(und(G)) = {(u, v)|(u, v) ∈ A(G) or (v, u) ∈ A(G)}. An oriented graph

is a direted graph whose underlying undireted graph is a simple graph.

An orientation

−→
G of a graph G is a direted graph suh that the underly-

ing undireted graph of

−→
G is G. The number of verties |V (G)| of a graph

G is alled the order of G. A subgraph H of a graph G is a graph whose

vertex set is a subset of V (G) and whose edge set is a subset of E(G). An

indued subgraph H of G is a subgraph of G suh that E(H) is the restri-
tion of E(G) to elements of V (H). The graph indued by a set of verties

{v1 · · · vk} of a graph G is the indued subgraph G[{v1 · · · vk}] of G with

vertex set {v1 · · · vk}.

Example 1.3 Figure 1.3 gives an example of a graph. The graph is simple

as the multipliity of eah edge is at most one. Figure 1.4 gives an example

of a direted graph. The direted graph is simple as the multipliity of eah

edge is at most one. Nevertheless, it is not an oriented graph as it ontains

both the ar (c, f) and the ar (f, c).
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A path (v1 · · · vn) of a graph G is a list of verties of G suh that for any

i in J2;nK, (vi−1, vi) is an edge of G. A direted path (v1 · · · vn) of a direted

graph G is a list of verties of G suh that for any i in J2;nK, (vi−1, vi) is an
ar of G. We say that (n − 1) is the length of the path, and that the path

is from v1 to vn. A yle (v1 · · · vn) of a graph G is a path of G suh that

(vn, v1) ∈ E(G). A iruit (v1 · · · vn) of a direted graph G is a direted path

of G suh that (vn, v1) ∈ A(G). We also say that n is the length of the yle.

A path or yle is said to be simple if all its verties are pairwise distint. A

graph is said to be onneted if for any pair u, v of verties, there exists a path
from u to v. A onneted omponent of a graph G is a maximal onneted

subgraph of G. A direted graph is said to be strongly onneted if for any

pair u, v of verties, there exists a direted path from u to v and a direted

path from v to u. A strongly onneted omponent of a direted graph G is

a maximal strongly onneted subgraph of G. A onneted omponent of a

direted graph G is a onneted omponent of und(G). The distane d(u, v)
between two verties u and v in a graph G is the length of the shortest path

between u and v in G if suh a path exists, and in�nite otherwise.

Example 1.4 Figure 1.5 gives an example of a path. Figure 1.6 gives an

example of a yle. We an see that both graphs are onneted. Figure 1.7

is an example of a non-onneted graph having three onneted omponents:

there is no path from a to b or to c, and there is none either from b to c.
Figure 1.8 is an example of a strongly-onneted direted graph: given any

two verties of the direted graph, one only needs to follow the grey ars

from one to the other.

A subdivision of a graph G is a graph obtained from G by replaing some

edges by paths of any length. The intersetion graph of a graph G is the

subdivision of G suh that eah edge of G has been replaed by a path with

two edges.

Example 1.5 Figure 1.9 gives an example of a graph (on the left) and its

intersetion graph (on the right). Every edge of the �rst graph has been

replaed by a vertex inident to both ends of that edge.

A neighbour u of a vertex v in a graph G is a vertex suh that

(u, v) ∈ E(G). When u is a neighbour of v, we say u and v are adja-

ent. The neighbourhood N(v) of a vertex v is the set of all neighbours of v.
The losed neighbourhood N [v] of a vertex v is the set N(v)∪{v}. The degree
dG(v) (or d(v)) of a vertex v in a graph G is the number of its neighbours.

An in-neighbour of a vertex v in a direted graph G is a vertex u suh that

(u, v) ∈ E(G). An out-neighbour of a vertex u in a direted graph G is a

vertex v suh that (u, v) ∈ E(G). We say (u, v) is an out-ar of u and an

in-ar of v. The in-degree d−G(v) (or d
−(v)) of a vertex v in a direted graph

G is the number of its in-neighbours. The out-degree d+G(v) (or d+(v)) of
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Figure 1.5: The path on four verties Figure 1.6: The yle on six verties

a b c

Figure 1.7: A graph with three on-

neted omponents

Figure 1.8: A strongly onneted di-

reted graph

Figure 1.9: A graph and its intersetion graph



Chapter 1. Introdution 9

Figure 1.10: An independent set of a

graph

Figure 1.11: A lique of a graph

a vertex v in a direted graph G is the number of its out-neighbours. The

degree dG(v) (or d(v)) of a vertex v in a direted graph G is the sum of its

in-degree and its out-degree.

An independent set is a set of verties induing a graph with no edge.

A lique is a set of verties induing a graph where any pair of verties

forms an edge. A proper olouring of a graph G over a set S is a funtion

c : V (G) → S suh that for any element i of S, c−1(i) is an independent set.

A partial proper olouring of a graph G is a proper olouring of an indued

subgraph of G. A bipartite graph is a graph admitting a proper olouring

over a set of size 2. A planar graph is a graph one an draw on the plane

without having edges rossing eah other.

Example 1.6 In Figure 1.10, the grey verties form an independent set of

the graph: they are pairwise not adjaent. In Figure 1.10, the grey verties

form a lique of the graph: they are pairwise adjaent.

The omplement G of a simple graph G is the

graph with vertex set V (G) = V (G) and edge set

E(G) = {(u, v)|u, v ∈ V (G), u 6= v, (u, v) /∈ E(G)}. The disjoint union

G ∪ H of two graphs G and H (having disjoint sets of verties, that is

V (G) ∩ V (H) = ∅) is the graph with vertex set V (G ∪H) = V (G) ∪ V (H)
and edge set E(G ∪H) = E(G) ∪ E(H). The join G ∨ H of two graphs G
and H is the graph with vertex set V (G ∨H) = V (G) ∪ V (H) and edge

set E(G ∨H) = E(G) ∪E(H) ∪ {(u, v)|u ∈ V (G), v ∈ V (H)}. The disjoint
union and the join operations are extended to more than two graphs,

iteratively, as the operation is both ommutative and assoiative. The

Cartesian produt G�H of two graphs G and H is the graph with vertex

set V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)} and edge set

E(G�H) = {((u1, v1), (u2, v2))|(u1 = u2 and (v1, v2) ∈ E(H))
or (v1 = v2 and (u1, u2) ∈ E(G))}.
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Figure 1.12: A forest of three trees

Example 1.7 The omplement of an independent set is a lique, and vie

versa. The join of n verties is a lique. The disjoint union of n verties is

an independent set. The omplement of the join of k graphs is the disjoint

union of the omplements of these graphs. The Cartesian produt of two

single edges is a yle on four verties.

A tree is a onneted graph with no yle. A forest is a graph with no

yle. A star is a tree where all verties but one have degree 1. That vertex
with higher degree is alled the enter of the star. A subdivided star is any

subdivision of a star. A aterpillar is a tree suh that the set of verties of

degree at least 2 forms a path. A rooted tree is a tree with a speial vertex,

alled the root of the tree. In a rooted tree, a vertex u is a hild of a vertex

v if u and v are adjaent and the distane between u and the root is greater

than the distane between v and the root; in this ase, we say v is a parent

of u. In a tree, a vertex of degree 1 is alled a leaf, and any other vertex is

alled an internal node.

Example 1.8 Figure 1.12 is an example of a forest. As in any forest, eah

onneted omponent is a tree. The middle one is a subdivided star, where

the grey vertex is the enter. The right one is a aterpillar, where the verties

of degree at least two are irled in grey, while the edges onneting them

are grey too, highlighting the fat they form a path.

A split graph is a graph whose vertex set an be partitioned into a lique

and an independent set. The adjaeny relation between these two sets might

be anything.

Example 1.9 Figure 1.13 gives an example of a split graph. The white

verties indue a lique, and the blak verties indue an independent set.
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Figure 1.13: A split graph

The set of ographs is de�ned reursively as follows: the graph with one

vertex and no edge is a ograph; if G and H are ographs, then G ∪H and

G ∨H are ographs.

Given a rooted tree with all internal nodes labelled D or J , going from the

leaves to the root, we an assoiate to eah node of the tree a graph as follows:

a leaf is assoiated to a single vertex; a node labelled D is assoiated to the

disjoint union of its hildren; and a node labelled J is assoiated to the join

of its hildren.

A otree of a ograph is a labelled rooted tree suh that: the leaves orrespond

to the verties of the ograph; the internal node are labelled D or J ; and the

graph assoiated to the root is the ograph.

Example 1.10 Figure 1.14 gives an example of a ograph, while Figure 1.15

gives a otree assoiated with the ograph of Figure 1.14. The root is the

J vertex on the top. The two verties labelled J on the right of the otree

ould be merged (into the root), but this is not neessary.
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a b c d e

f g h

Figure 1.14: A ograph

a c b d e f h g

D

J

D

J

J

D

J

Figure 1.15: An assoiated otree
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Chapter 2

Impartial games

Impartial games are a subset of games in whih the players are not distin-

guished, that is they both have the same set of moves through the whole

game. More formally, a game G is said to be impartial if GL = GR
and all

its options are impartial.

As the players are not distinguished, the only possible outomes are N
and P (the only di�erene between the players is who plays �rst). When we

deal with impartial games only, we refer to the �rst player as she and the

seond player as he.

Sprague [41, 42℄ and Grundy [19℄ showed independently that any impar-

tial position is equivalent in normal play to a Nim position on a single heap.

The size of suh a heap is unique, whih indues a funtion on positions

that is alled the Grundy-value and is noted g. An impartial game has out-

ome P if and only if its Grundy-value is 0. The Grundy-value of a game

is the minimum non-negative integer that is not the Grundy-value of any

option of this game. The purpose of the Grundy-value is to give additional

information ompared to the outome. It is atually su�ient to know the

Grundy-values of two games to determine the Grundy-value of their sum:

g(G+H) = g(G)⊕ g(H)

where ⊕ is the XOR of integers (sum of numbers in binary without arrying).

That operation is also alled the Nim-sum of two integers. It is known that

g(G) = g(H) ⇔ G ≡+ H when G and H are both impartial games (the

Grundy-value is not de�ned on partizan games), and two impartial games

having di�erent Grundy-values are inomparable.

The impartial games we will present in this hapter are alled Ver-

texNim and Timber. Both games are played on direted graphs, though

VertexNim is played on weighted direted graphs whereas having weights

would be irrelevant when playing Timber. In Setion 2.1, we de�ne the game

VertexNim and give polynomial-time algorithms for �nding the normal

outome of direted graphs with a self loop on every vertex and undireted

graphs where the self-loops are optional. In Setion 2.2, we de�ne the game

Timber, show how to redue any position to a forest and give polynomial-

time algorithms for �nding the normal outome of onneted direted graphs

and oriented forests of paths.
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The results presented in Setion 2.1 are about to appear in [16℄ (joint

work with Éri Duhêne), and those presented in Setion 2.2 appeared in [29℄

(joint work with Rihard Nowakowski, Emily Lamoureux, Stephanie Mellon

and Timothy Miller).

2.1 VertexNim . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Direted graphs . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Undireted graphs . . . . . . . . . . . . . . . . . . 21

2.2 Timber . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 General results . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Perspetives . . . . . . . . . . . . . . . . . . . . . . 40

2.1 VertexNim

VertexNim is an impartial game played on a weighted strongly-onneted

direted graph with a token on a vertex. On a move, a player dereases the

weight of the vertex where the token is and slides the token along a direted

edge. When the weight of a vertex v is set to 0, v is removed from the

graph and all the pairs of ars (p, v) and (v, s) (with p and s not neessarily
distint) are replaed by an ar (p, s).

A position is desribed by a triple (G,w, u), where G is a direted graph,

w a funtion from V (G) to positive integers and u a vertex of G.

Example 2.1 Figure 2.1 gives an example of a move. The token is on the

grey vertex. The player whose turn it is hooses to derease the weight of

this vertex from 5 to 2 and slide the token through the ar to the right. They

ould have slid it through the ar to the left, but through no other ar.

Example 2.2 Figure 2.2 is an example of a move whih sets a vertex to

0. The token is on the grey vertex. The player whose turn it is hooses to

derease the weight of this vertex from 2 to 0 and move the token through the

ar to the right. New ars are added from the bottom left vertex and middle

right vertex to the bottom middle vertex, top middle vertex and middle right

vertex, reating a self loop on the middle right vertex.

VertexNim an also be played on a onneted undireted graph G by

seeing it as a symmetri direted graph where the vertex set remains the

same and the ar set is {(u, v), (v, u)|(u, v) ∈ E(G)}.
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2 3

3 5 1

2 3

3 2 1

Figure 2.1: Playing a move in VertexNim

2 3 5

7 2 2

4 2 5

2 3 5

7 2

4 2 5

Figure 2.2: Setting a vertex to 0 in VertexNim
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VertexNim an be seen as a variant of the game Vertex NimG (see

[43℄), where the players annot put the token on a vertex with weight 0 and

instead ontinue to move it until it reahes a vertex with positive weight,

though we only onsider the Remove then move version.

Multiple ars are irrelevant, so we an onsider we are only dealing with

simple direted graphs.

Example 2.3 Figure 2.3 shows an exeution of the game. The token is on

the grey vertex and the player whose turn it is moves it through the grey ar.

After 11 moves, all weights are set to 0, so the player who started the game

wins. Be areful that it does not mean the starting position is an N -position,

as the seond player might have better moves to hoose at some point in the

game.

In this setion, we present algorithms to �nd the outome of any direted

graph with a self loop on every vertex and the outome of any undireted

graph.

2.1.1 Direted graphs

On a iruit, without any loop, the game is alled Adjaent Nim. We �rst

analyse the ase when the graph is a iruit and no vertex has weight 1, that
is w−1(1) = ∅. If the length of the iruit is odd, the �rst player an redue

the weight of the �rst vertex to 1 then �opy� the moves of the seond player

(reduing the weight of the vertex to 0 if he just did the same, and reduing

the weight to 1 otherwise) to fore him to play on the verties she leaves him

in a way so that he is fored to empty them (beause she left the weight as

1), breaking the �symmetry� on the last vertex to save the last move for her.

When the length of the iruit is even, a player who would empty a vertex

while no 1 has appeared would get themself in the position of a seond player

on an odd iruit, so it is never a good move and the two players will play on

distint sets of verties until a vertex is lowered to 1. Atually, we will see

that getting the weight of a vertex to 1 is not good either, so the minimum

weight of the verties deides the winner.

Theorem 2.4 Let (Cn, w, v1) : n > 3 be an instane of VertexNim with

Cn the iruit of length n and w : V → N>1.

• If n is odd, then (Cn, w, v1) is an N -position.

• If n is even, then (Cn, w, v1) is an N -position if and only if the smallest

index of a vertex of minimum weight, that is min{argmin
16i6n

w(vi)}, is

even.

Note that when n is even, the above Theorem implies that the �rst player

who must play on a vertex of minimum weight will lose the game.

Proof.
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3 2

4 1 5

2 3 4

3 2

7 5

2 3 4

3 2

42

2 3 4

3 2

4 2

2 4
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4 2

4

3 2

2

4

3

2

4

3

1

4

3

4

1

4 4 0

Figure 2.3: Playing VertexNim, the token being on the grey vertex
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• Case (1) If n is odd, then the �rst player an apply the following

strategy to win: �rst, she plays w(v1) → 1. Then for all 1 6 i < n−1
2 :

if the seond player empties v2i, then the �rst player also empties

the following vertex v2i+1. Otherwise, she sets w(v2i+1) to 1. The

strategy is di�erent for the last two verties of Cn: if the seond

player empties vn−1, then she plays w(vn) → 1, otherwise she plays

w(vn) → 0. As w(v1) = 1, the seond player is now fored to empty

v1. Sine an even number of verties have been deleted at this

point, we have an odd iruit to play on. It now su�es for the

�rst player to empty all the verties on the seond run. Indeed, the

seond player is also fored to set eah weight to 0 sine he has to

play on verties having their weight equal to 1. Sine the iruit is

odd, the �rst player is guaranteed to make the last move on vn or vn−1.

• Case (2) If n is even, we laim that who must play the �rst vertex of

minimum weight will lose the game. The winning strategy of the other

player onsists in dereasing by 1 the weight of eah vertex at their

turn. First assume that min{argmin
16i6n

w(vi)} is odd. If the strategy

of the seond player always onsists in dereasing the weight of the

verties he plays on by 1, then the �rst player will be the �rst to

set a weight to 0 or 1. If she sets a vertex to 0, then the seond

player now faes an instane (C ′
n−1, w

′, vi) with w′ : V ′ → N>1, whih

is winning aording to the previous item. If she sets a vertex to

1, then the seond player will empty the following vertex, leaving to

the �rst player a position (C ′
n−1 = (v′1, v

′
2, . . . , v

′
n−1), w

′, v′2) with w′ :
V ′ → N>1 exept on w′(v′1) = 1. This position orresponds to the

one of the previous item after the �rst move, and is thus losing. A

similar argument shows that the �rst player has a winning strategy if

min{argmin
16i6n

w(vi)} is even.

�

On a general strongly onneted digraph, the problem seems harder.

Nevertheless, we manage to �nd the outome of a strongly onneted digraph

having the additional ondition that every vertex has a self loop.

When the token is on a vertex with weight at least 2 and a self loop, we

give a non-onstrutive argument that the game is an N -position (though

from the rest of the proof, we an dedue a winning move in polynomial

time). Hene, when the token is on a vertex of weight 1, the aim of both

players is to have the other player be the one that moves it to a vertex with

weight at least 2. This is why we de�ne a labelling of the verties of the

direted graph that indiates if the next player is on a good position to have

her opponent eventually move the token to a vertex with weight at least 2.
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De�nition 2.5 Let G be a direted graph. We de�ne a labelling

loG : V (G) → {P,N} as follows :

Let S ⊆ V (G) be a non-empty set of verties suh that the graph indued by

S is strongly onneted and ∀u ∈ S,∀v ∈ (V (G)\S), (u, v) /∈ E(G).
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.
Let Ge be the graph indued by V (G)\S and Go the graph indued by

V (G)\(S ∪ T ).
If |S| is even, we label N all elements of S and we label elements of V \ S
as we would have labelled them in the graph Ge.

If |S| is odd, we label P all elements of S, we label N all elements of T , and
we label elements of V \ (S ∪ T ) as we would have labelled them in the graph

Go.

When deomposing the graph into strongly onneted omponents, S is one

of those with no out-ar. The hoie of S is not unique, unlike the loG
funtion: if S1 and S2 are both strongly onneted omponents without out-

ars, the one whih is not hosen as the �rst set S will remain a strongly

onneted omponent after the removal of the other, and as it has no out-ar,

none of its verties will be in the T set.

The labelled graph does not need to be strongly onneted in that de�-

nition as we will use it on the subgraph of our position indued by verties

of weight 1, where a path from some verties might have to go through a

vertex of bigger weight to reah some other verties of weight 1.

Example 2.6 Figure 2.4 gives the lo labelling of a direted graph. The

sets Si, Ti are pointed out to give the order in whih we onsider them. Note

that several orders are possible, but all return the same labelling. All verties

belonging to S1 are labelled N beause the size of S1 is even. As suh, T1

is onsidered empty even though there are verties having out-neighbours in

S1. All verties belonging to S5 are labelled P beause the size of S5 is odd.

As suh, the two verties belonging to T5 (beause they are unlabelled at

that time and have an outneighbour in S5) are labelled N .

We now give the algorithm for �nding the outome of a strongly on-

neted direted graph with a self loop on every vertex.

Theorem 2.7 Let (G,w, u) be an instane of VertexNim where G is

strongly onneted with a self loop on eah vertex. Deiding whether (G,w,u)

is P or N an be done in time O(|V (G)||E(G)|).

Proof. Let G′
be the indued subgraph of G suh that

V (G′) = {v ∈ V (G) | w(v) = 1}.
If G = G′

, then (G,w, u) is an N -position if and only if |V (G)| is odd sine

the problem redues to �She loves move, she loves me not�. We will now

assume that G 6= G′
, and onsider two ases for w(u):
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N N N P N P

N N P N P N

P N P P N N

N P P P N P

S1 S2
T2

S3

T3

S4

T4S5

T5 S6

S7
T7

S8

Figure 2.4: lo-labelling of a direted graph

• Case (1) Assume w(u) > 2. If there is a winning move whih redues

the weight of u to 0, then we an play it and win. Otherwise, reduing

the weight of u to 1 and staying on u is a winning move. Hene

(G,w, u) is an N -position.

• Case (2) Assume now w(u) = 1, i.e., u ∈ G′
. Aording to De�nition

2.5, omputing loG′
yields a sequene of ouples of sets (Si, Ti) (whih

is not unique). Note that we do not onsider Ti when Si has an even

size. Thus the following assertions hold: if u ∈ Si for some i, then any

diret suessor v of u is either in the same omponent Si (as there

are no out-ar) or has been previously labelled (is in ∪j<i(Sj ∪ Tj)),
and if u ∈ Ti 6= ∅ for some i, then there exists a diret suessor v of

u in the set Si, with loG′(v) = P.
Our goal is to show that (G,w, u) is an N -position if and only

if loG′(u) = N by indution on |V (G′)|. If |V (G′)| = 1, then

V (G′) = {u} and loG′(u) = P. Sine w(u) = 1, we are fored to

redue u to 0 and go to a vertex v suh that w(v) > 2, whih we

previously proved to be a losing move. Now assume |V (G′)| > 2.
First, note that when one redues the weight of a vertex v to 0, the
replaement of the ars does not hange the strongly onneted om-

ponents (exept for the omponent ontaining v of ourse, whih loses
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one vertex). Consequently, if u ∈ Si for some i, then for any vertex

v ∈ ∪i−1
l=1(Tl∪Sl), loG′\{u}(v) = loG′(v) and for any vertex w ∈ Si\{u},

loG′\{u}(w) 6= loG′(w) sine parity of Si has hanged. If u ∈ Ti for some

i, then for any vertex v ∈ (∪i−1
l=1(Tl ∪ Sl)) ∪ Si, loG′\{u}(v) = loG′(v).

We now onsider two ases for u: �rst assume that loG′(u) = P, with
u ∈ Si for some i. We redue the weight of u to 0 and we are fored to

move to a diret suessor v. If w(v) > 2, we previously proved this is

a losing move. If v ∈ ∪i−1
l=1(Tl ∪ Sl), then loG′\{u}(v) = loG′(v) = N (if

loG′(v) = P , we would have v ∈ Sl, and so u ∈ Tl) and it is a losing

move by indution hypothesis. If v ∈ Si, then loG′\{u}(v) 6= loG′(v)
and as loG′(v) = P , loG′\{u}(v) = N and the move to v is a losing

move by indution hypothesis.

Now assume that loG′(u) = N . If u ∈ Ti for some i, we an redue

the weight of u to 0 and move to a vertex v ∈ Si, whih is a winning

move by indution hypothesis. If u ∈ Si for some i, it means that

|Si| is even, we an redue the weight of u to 0 and move to a vertex

v ∈ Si, with loG′\{u}(v) 6= loG′(v) = N . This is a winning move by

indution hypothesis. Hene, (G,w, u) is an N -position if and only if

loG′(u) = N . Figure 2.5 illustrates the omputation of the lo funtion.

Conerning the omplexity of the omputation, note that when w(u) > 2,
the algorithm answers in onstant time. The omputation of loG′(u) when
w(u) = 1 needs to be analysed more arefully. Deomposing a direted graph

H into strongly onneted omponents to �nd the sets S and T an be done

in time O(|V (H)| + |E(H)|), and both |V (H)| and |E(H)| are less than or

equal to |E(G)| in our ase sine H is a subgraph of G and G is strongly

onneted. Moreover, the number of times we ompute S and T is learly

bounded by |V (G)|. These remarks lead to a global algorithm running in

O(|V (G)||E(G)|) time. �

The omplexity of the problem on a general digraph where some of the

verties with weight at least 2 have no self loop is still open (remark that

having a self loop on a vertex of weight 1 does not a�et the game).

2.1.2 Undireted graphs

On undireted graphs with a self loop on eah vertex, the omputation of

the labelling is easier sine any onneted omponent is �strongly onneted�.

Hene, the same algorithm gives a better omplexity as the labelling of the

subgraph indued by the verties of weight 1 beomes linear.

Proposition 2.8 Let (G,w, u) be a VertexNim position on an undireted

graph suh that there is a self loop on eah vertex of G. Deiding whether

(G,w, u) is P or N an be done in time O(|V (G)|).
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Figure 2.5: lo-labelling funtion of a subgraph indued by verties of weight 1
assuming every vertex has an undrawn self loop

Proof. Let G′
be the indued subgraph of G suh that

V (G′) = {v ∈ V (G) | w(v) = 1}.
If G = G′

, then (G,w, u) is an N -position if and only if |V (G)| is odd sine

the problem redues to �She loves move, she loves me not�. In the rest of

the proof, assume G 6= G′
.

• Case (1) We �rst onsider the ase where w(u) > 2. If there is a

winning move whih redues the weight of u to 0, then we play it and

win. Otherwise, reduing the weight of u to 1 and staying on u is a

winning move. Hene (G,w, u) is an N -position.

• Case (2) Assume w(u) = 1. Let nu be the number of verties of the

onneted omponent of G′
whih ontains u. We show that (G,w, u)

is an N -position if and only if nu is even by indution on nu. If nu = 1,
then we are fored to redue the weight of u to 0 and move to another

vertex v having w(v) > 2, whih we previously proved to be a losing

move. Now assume nu > 2. If nu is even, we redue the weight of

u to 0 and move to an adjaent vertex v with w(v) = 1, whih is a

winning move by indution hypothesis. If nu is odd, then we redue

the weight of u to 0 and we are fored to move to an adjaent vertex v.
If w(v) > 2, then we previously proved it is a losing move. If w(v) = 1,
this is also a losing move by indution hypothesis. Therefore in that

ase, (G,w, u) is an N -position if and only if nu is even.
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Conerning the omplexity of the omputation, note that when w(u) > 2,
the algorithm answers in onstant time. When w(u) = 1, we only need to

�nd the onneted omponent of G′
ontaining u and its order, whih an

be done in O(|V (G)|) time. Thus, the algorithm runs in O(|V (G)|) time. �

We now fous on the general ase where the self loops are optional. A

vertex of weight at least 2 with a self loop is still a winning starting point

for the same reason as in the previous studied ases, and lowering the weight

of a vertex to 0 gives a self loop to all its neighbours beause the graph is

undireted, so the verties of weight 1 are taken are of the same way as in

the above proposition. We show how to deide the outome of a position in

the following theorem.

Theorem 2.9 Let (G,w, u) be a Vertexnim position on an undireted

graph. Deiding whether (G,w, u) is P or N an be done in O(|V (G)||E(G)|)
time.

The proof of this theorem requires several de�nitions that we present

here.

De�nition 2.10 Let G be an undireted graph with a weight funtion

w : V → N>0 de�ned on its verties.

Let S = {u ∈ V (G) | ∀v ∈ V (G), w(u) 6 w(v)}.
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.

Let G̃ be the graph indued by V (G) \ (S ∪ T ).
We de�ne a labelling luG,w of its verties as follows :

• ∀u ∈ S, luG,w(u) = P, ∀v ∈ T , luG,w(v) = N
• ∀t ∈ V (G)\(S ∪ T ), luG,w(t) = lu

G̃,w
(t).

Example 2.11 Figure 2.6 gives the lu labelling of an undireted weighted

graph. The lowest weight is 2, so all the verties having weight 2 are labelled
P. Then we know we an label all their unlabelled neighbours with N .

Proof. Let Gu be the indued subgraph of G suh that

V (Gu) = {v ∈ V (G) | w(v) = 1 or v = u}, and G′
be the indued

subgraph of G suh that

V (G′) = {v ∈ V (G) |w(v) > 2
(v, v) /∈ E(G)
∀t ∈ V (G), (v, t) ∈ E(G) ⇒ w(t) > 2}.

If G = Gu and w(u) = 1, then (G,w, u) is an N -position if and only if

|V (G)| is odd sine it redues to �She loves move, she loves me not�.

If G = Gu and w(u) > 2, we redue the weight of u to 0 and move to any

vertex if |V (G)| is odd, and we redue the weight of u to 1 and move to

any vertex if |V (G)| is even; both are winning moves, hene (G,w, u) is an
N -position.
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Figure 2.6: lu-labelling funtion of an undireted graph

In the rest of the proof we will assume that G 6= Gu. In the �rst three ases,

we assume u /∈ G′
.

• Case (1) Assume w(u) > 2 and there is a loop on u. If there is a

winning move whih redues the weight of u to 0, then we an play it

and win. Otherwise, reduing the weight of u to 1 and staying on u is

a winning move. Therefore (G,w, u) is an N -position.

• Case (2) Assume w(u) = 1.
Let n be the number of verties of the onneted omponent of

Gu whih ontains u. We show that (G,w, u) is an N -position if

and only if n is even by indution on n. If n = 1, then we are

fored to redue the weight of u to 0 and move to another vertex

v, with w(v) > 2, whih was proved to be a losing move sine it

reates a loop on v. Now assume n > 2. If n is even, we redue

the weight of u to 0 and move to a vertex v satisfying w(v) = 1,
whih is a winning move by indution hypothesis (the onneted

omponent of Gu ontaining u being unhanged, apart from the

removal of u). If n is odd, we redue the weight of u to 0 and

move to some vertex v, reating a loop on it. If w(v) > 2, we

already proved this is a losing move. If w(v) = 1, it is a losing move

by indution hypothesis. We an therefore onlude that (G,w, u)
is an N -position if and only if n is even. Figure 2.7 illustrates this ase.
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Figure 2.8: Case 3: an N -position

sine u of weight w(u) > 1 has a neigh-

bour of weight 1.

• Case (3) Assume w(u) > 2 and there is a vertex v suh that

(u, v) ∈ E(G) and w(v) = 1. Let n be the number of verties of the

onneted omponent of Gu whih ontains u. If n is odd, we redue

the weight of u to 1 and we move to v, whih we proved to be a winning

move. If n is even, we redue the weight of u to 0 and we move to v,
whih we also proved to be winning. Hene (G,w, u) is an N -position

in that ase. Figure 2.8 illustrates this ase.

• Case (4) Assume now u ∈ G′
. We show that (G,w, u) is N if and only

if luG′,w(u) = N by indution on

∑
v∈V (G′) w(v). If

∑
v∈V (G′)w(v) =

2, we get G′ = {u} and we are fored to play to a vertex v suh

that w(v) > 2 and v /∈ V (G′), whih we proved to be a losing

move. Assume

∑
v∈V (G′)w(v) > 3. If luG′,w(u) = N , we redue

the weight of u to w(u) − 1 and move to a vertex v of G′
suh that

w(v) < w(u) and luG′,w(v) = P. Suh a vertex exists by de�nition of

lu. Let (G1, w1, v) be the resulting position after suh a move. Hene

luG′

1,w1
(v) = luG′,w(v) = P sine the only weight that has been re-

dued remains greater or equal to the one of v. And (G1, w1, v) is a
P-position by indution hypothesis. If luG′,w(u) = P, the �rst player
is fored to redue the weight of u and to move to some vertex v. Let
(G1, w1, v) be the resulting position. First remark that w1(v) > 2 sine
u ∈ G′

. If she redues the weight of u to 0, she will lose sine v now

has a self loop. If she redues the weight of u to 1, she will also lose

sine (u, v) ∈ E(G1) and w1(u) = 1 (aording to ase (3)).

Assume she redued the weight of u to a number w1(u) > 2. Thus

luG′

1,w1
(u) still equals P sine the only weight we modi�ed is the one

of u and it has been dereased. If v /∈ G′
, i.e., v has a loop or there

exists t ∈ V (G1) suh that (v, t) ∈ E(G1) and w1(t) = 1, then the

seond player wins aording to ases (1) and (3). If v ∈ G′
and
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Figure 2.9: Case 4: lu-labelling of the subgraph G′

luG′,w(v) = N , then luG′

1,w1
(v) is still N sine the only weight we

dereased is the one of a vertex labelled P being a neighbour of u.
Consequently the resulting position makes the seond player win by

indution hypothesis. If v ∈ G′
and luG′,w(v) = P , then we neessarily

have w(v) = w(u) in G′
. As luG′

1,w1
(u) = P and (u, v) ∈ E(G1), then

luG′

1,w1
(v) beomes N , implying that the seond player wins by indu-

tion hypothesis. Hene (G,w, u) is N if and only if luG′,w(u) = N .

Figure 2.9 shows an example of the lu labelling.

Conerning the omplexity of the omputation, note that all the ases

exept (4) an be exeuted in O(|E(G)|) operations. Hene the omputation

of luG′,w(u) to solve ase (4) beomes ruial. We just need to ompute the

strongly onneted omponent and the assoiated direted ayli graph to

ompute S and T , so in the worst ase, it an be done in O(|E(G)|) time.

And the number of times where S and T are omputed in the reursive

de�nition of lu is learly bounded by |V (G)|. All of this leads to a global

algorithm running in O(|V (G)||E(G)|) time.

�

2.2 Timber

Timber is an impartial game played on a direted graph. On a move, a

player hooses an ar (x, y) of the graph and removes it along with all that is

still onneted to the endpoint y in the underlying undireted graph where

the ar (x, y) has already been removed. Another way of seeing it is to put a

vertial domino on every ar of the direted graph, and onsider that if one

domino is toppled, it topples the dominoes in the diretion it was toppled

and reates a hain reation. The diretion of the ar indiates the diretion
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x y

Figure 2.10: Playing a move in Timber

in whih the domino an be initially toppled, but has no inidene on the

diretion it is toppled, or on the fat that it is toppled, if a player has hosen

to topple a domino whih will eventually topple it.

The desription of a position onsists only of the direted graph on whih

the two players are playing. Note that it does not need to be strongly

onneted, or even onneted.

Example 2.12 Figure 2.10 gives an example of a move. The player whose

move it is hooses to remove the ar (x, y). The whole onneted omponent

ontaining y in the underlying undireted graph without the ar (x, y) is

removed with it.

Example 2.13 Figure 2.11 shows an exeution of the game. On a given

position, the player who is playing is hoosing the dark grey ar, and all

that will disappear along with it is oloured in lighter grey. The xi and yi
indiate the endpoints of the hosen ar. After the fourth move, the graph

is empty of ars, so the game ends. Note that some games an end leaving

several isolated verties, as well as no vertex at all.

In this setion, we present algorithms to �nd the normal outome of any

onneted direted graph, and the Grundy-value of any orientation of paths.

2.2.1 General results

First, we see how to redue the problem to orientations of forests: playing

in a yle removes the whole onneted omponent, and playing on an ar

going out of a degree-1 vertex leaves only that vertex in the omponent. In

both ases there are no more move available in the omponent after they

have been played, so it is natural to aim at reduing the former to the latter.

The only issue is how to deal with the ars whih were going in and out the

yle. This is what we present in Theorem 2.14. Note that the yle does

not need to be indued, nor even elementary.
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Figure 2.11: Playing Timber
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Theorem 2.14 Let G be a direted graph seen as a Timber position suh

that there exists a set S of verties that forms a 2-edge-onneted omponent

of G, and x, y two verties not belonging to V (G). Let G′
be the direted

graph with vertex set

V (G′) = (V (G) \ S) ∪ {x, y}

and ar set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

Then G =+ G′
.

Proof. Let H be any game suh that Left has a winning strategy on G+H
playing �rst (or seond). On G′+H, she an follow the same strategy unless

it reommends to hoose an ar between elements of S or Right hooses the

ar (y, x). In the �rst ase, she an hoose the ar (y, x), whih is still on

play sine any move removing (y, x) in G′
would remove all ar of S in G.

Both moves leave some H0 where Left has a winning strategy playing seond

sine the move in the �rst game was winning. In the seond ase, she an

assume he hose any ar of S and ontinue to follow her strategy. For similar

reasons, it is possible and it is winning.

The proof that Right wins G′+H whenever he wins G+H is similar. �

Using this redution, the number of yles dereases stritly, so after

repeating the proess as many times as possible (whih is a �nite number of

times), we end up with a direted graph with no yle, namely an orientation

of a forest.

Corollary 2.15 For any direted graph G, there exists an orientation of a

forest FG suh that G =+ FG and suh an FG is omputable in quadrati

time.

In Corollary 2.15, the omplexity is important, as it is easy to produe

an orientation of a forest (even an orientation of a path) with any Grundy-

value:

de�ne Pn the oriented graph with vertex set

V (Pn) = {vi}06i6n

and ar set

A(Pn) = {(vi−1, vi)}16i6n.

Then the Timber position Pn has Grundy-value n.
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Example 2.16 Figure 2.12 shows an example of a direted graph (on top)

and a orresponding forest (on bottom), obtained after applying the redu-

tion from Theorem 2.14. The yles are oloured grey and redued to the

grey verties of the forest. The white verties denote the verties of degree 1
we add with an out-ar toward those grey verties. There might be several

suh forests depending on the hoie of the omponent used for the redution,

but they all share the same Grundy-value. Choosing maximal 2-onneted

omponents when reduing leads to a unique forest with least number of

verties.

The next proposition allows us another redution. In partiular, it gives

another proof that all forests that an be obtained from a graph G after the

redution of Theorem 2.14 are equivalent (set k and ℓ to 0).

Proposition 2.17 Let T be an orientation of a tree suh that there exist

three sets of verties {ui}06i6k, {vi}06i6k, {wi}06i6ℓ ⊂ V (G) suh that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ) ⊂ A(G)

2. (uk, w0), (vk, wℓ) ∈ A(G).

3. u0 and v0 have in-degree 0 and out-degree 1.

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1.

Let T ′
be the orientation of a tree with vertex set

V (T ′) = V (T ) \ {vi}06i6k

and ar set

A(T ′) = A(T ) \ ({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}).

Then T =+ T ′
.

Proof. The proof is similar to the one of Theorem 2.14: playing on (vi−1, vi)
or (ui−1, ui) is similar (as well as (vk, wℓ) and (uk, w0)), and no move apart

from some (vj−1, vj) (and (vk, wℓ)) would remove the ar (ui−1, ui) without
removing the ar (vi−1, vi).

�

Note that we never used the fat we were onsidering the normal version

of the game when we proved both the redutions from Theorem 2.14 and

Proposition 2.17. That means they an be used in the misère version as

well.
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Figure 2.12: A Timber position and a orresponding orientation of a forest
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Figure 2.13: A Timber position and its image after redution having di�erent

Grundy-values

2.2.2 Trees

Knowing we an onsider only forests without loss of generality, we now fous

on trees. Though we are not able to give the Grundy-value of any tree, whih

would have the problem ompletely solved (being able to �nd the outome

of any forest is atually equivalent to being able to �nd the Grundy-value

of any tree), we �nd their outomes using two more redutions, one of them

leaving the Grundy-value unhanged.

First, we note that if we an �nish the game in one move, that is we an

remove all the ars of the graph, the game is an N -position.

Lemma 2.18 Let T be an orientation of a tree suh that there is a leaf v
of T with out-degree 1. Then o+(T ) = N , that is T is a next-player win

position.

Proof. Let x be the out-neighbour of v. The �rst player wins by toppling

the domino on the ar (v, x). �

The next lemma eliminates ouples of moves that keep being losing moves

throughout the whole game as long as they are both available. Unfortunately,

though this redution keeps the outome of the position, it may hange its

Grundy-value, and we know some ases where the Grundy-value is hanged,

as well as some others where it is not:

• Figure 2.13 shows an example of a position whih hanges Grundy-

value after applying the redution. On the left, the graph has Grundy-

value 3, and on the right, the redued graph has Grundy-value 1.
• All P-positions have same Grundy-value (namely 0), so any P-position

that redues keeps the Grundy-value unhanged. And Figure 2.14

shows an example of an N -position whih keeps the Grundy-value

unhanged after applying the redution: both positions have Grundy-

value 2.

Lemma 2.19 Let T1, T2 be two timber positions. Choose y ∈ V (T1),
z ∈ V (T2) and let x be a vertex disjoint from T1 and T2. Let T be the position

with vertex set

V (T ) = V (T1) ∪ {x} ∪ V (T2)

and ar set

A(T ) = A(T1) ∪ {(x, y), (x, z)} ∪A(T2).
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Figure 2.14: A Timber N -position and its image after redution having the same

Grundy-value

Let T ′
be the position with vertex set

V (T ′) = V (T1) ∪ V (T2)

where y and z are identi�ed, and ar set

A(T ′) = A(T1) ∪A(T2).

Then o+(T ) = o+(T ′).

Proof. We show it by indution on the number of verties of T ′
. If

V (T ′) = {y}, then there is no move in T ′
and T onsists in two ars

going out the same vertex. Hene o+(T ) = P = o+(T ′). Assume now

|V (T ′)| > 1. Assume the �rst player has a winning move in T . If the hosen
ar removes x from the game, hoosing the same ar in T ′

leaves the same

position. Otherwise, hoosing the same ar in T ′
leaves a position whih has

the same outome by indution. Hene the �rst player has a winning move

in T ′
. The proof that she has a winning move in T if she has one in T ′

is

similar. �

Example 2.20 The redution is from T to T ′
. Figures 2.15 and 2.16 illus-

trate the redution by giving an example of an orientation of a tree and its

image after redution. The initial graph has no move that empties it, so we

try to �nd a smaller graph with the same outome. The grey ars are the

ones we ontrat, and the redution annot be applied anywhere else on the

�rst tree. However, the redution an again be applied on the grey ars of

the seond tree (and only them).

The next lemma presents a redution whih preserves the Grundy-value.

When there are two orientations of paths direted toward a leaf from a

ommon vertex x, none of these paths a�et the other, or the rest of the

tree. Hene we an replae them with just one path, whose length is the

Nim-sum of the lengths of the original paths.

Lemma 2.21 Let T0 be an orientation of a tree, w ∈ V (T0) a vertex, and

n,m ∈ N two integers. Let T be the position with vertex set

V (T ) = V (T0) ∪ {yi}16i6n ∪ {zi}16i6m
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Figure 2.15: An orientation of a tree seen as a Timber position

Figure 2.16: Its image after redution, having the same outome
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and ar set

A(T ) = A(T0) ∪{(yi, yi+1)}16i6n−1

∪{(zi, zi+1)}16i6m−1

∪{(w, y1), (w, z1)}.

Let T ′
be the position with vertex set

V (T ′) = V (T0) ∪ {xi}16i6n⊕m

and ar set

A(T ′) = A(T0) ∪ {(xi, xi+1)}16i6(n⊕m)−1 ∪ {(w, x1)}.

Then o+(T + T ′) = P and o+(T ) = o+(T ′).

Proof. We prove it by indution on |V (T0)| + n + m and show

that o+(T + T ′) = P whih means g(T ) = g(T ′) and thus implies that

o+(T ) = o+(T ′). If n+m = 0, T = T0 = T ′
.

Assume now |V (T0)| + n +m > 0. Any ar of T0 is in both T and T ′
,

thus if the �rst player hooses suh an edge in one of T or T ′
then the seond

player an hoose the orresponding ar in T ′
or T , whih leaves a P-position

(either by indution or beause the two remaining positions are the same).

Assume the �rst player hooses the ar (yi, yi+1) (or (w, y1) = (y0, y1)). If

(i ⊕ m) < (n ⊕ m), the seond player an hoose the ar (xi⊕m, x(i⊕m)+1)
(or (w, x1) if i⊕m = 0) whih leaves a P-position by indution. Otherwise,

there exists j < m suh that (i ⊕ j = n ⊕ m), and the seond player an

hoose the ar (zj , zj+1) whih leaves a P-position by indution. Similarly,

we an prove that the seond player has a winning answer to any move of

the type (xi, xi+1) or (zi, zi+1). �

Example 2.22 Again, the redution is from T to T ′
. Figures 2.17 and 2.18

illustrate the redution by giving an example of an orientation of a tree

and its image after redution. The initial graph has no move that empties

it, and the redution from Lemma 2.19 annot be applied, so we use the

other redution to get a smaller tree having the same outome (even better,

having the same Grundy-value). The grey ars of the �rst tree are the ones

of the paths we merge, and the redution annot be applied anywhere else

on the �rst tree. The grey ars of the seond tree are the ones of the paths

we reated by merging those of the �rst tree. The redution an again be

applied on the seond tree, where it is even possible to apply the redution

from Lemma 2.19.

A position for whih we annot apply the redution from Lemma 2.19 or

Lemma 2.21 is alled minimal. A leaf path is a path from a vertex x to a

leaf y, with x 6= y, onsisting only of verties of degree 2, apart from y and

possibly x.
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Figure 2.17: An orientation of a tree seen as a Timber position

Figure 2.18: Its image after redution, having the same outome
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The oming lemma is important beause it gives us the outome of a

minimal position. Thus after having redued our initial position as muh as

we ould, we get its outome. Furthermore, if it is an N -position, it proposes

a winning move, that we an baktrak to get a winning move from the initial

position.

Lemma 2.23 A minimal position with outome P an only be a graph with

no ar.

Proof. Let T be a minimal position with at least one ar. If it has exatly

one ar, it is obviously in N , so we an assume T has at least two ars.

Then there exists a vertex w at whih there are two leaf paths {xi}06i6n

and {yi}06i6m (x0 = w = y0). If (xn, xn−1) or (ym, ym−1) is an ar, the �rst

player an hoose it and win. Now assume both (xn−1, xn) and (ym−1, ym)
are ars. As T is minimal, it annot be redued using Lemma 2.19, so all

(xi, xi+1), (yi, yi+1), (w, x1) and (w, y1) are ars. But then we an apply the

redution from Lemma 2.21, whih is a ontradition. �

Applying redutions from Lemma 2.19 and Lemma 2.21 leads us to a

position where �nding the outome is easy: either the graph has no ar left

and it is a P-position or there is a move that empties the graph and it is an

N -position. Note that the redution from Lemma 2.19 dereases the number

of verties without inreasing the number of leaves, and the redution from

Lemma 2.21 dereases the number of leaves without inreasing the number

of verties, so they an only be applied a linear number of times. As �nding

where to apply the redution an be done in linear time, this leads to a

quadrati time algorithm.

Theorem 2.24 We an ompute the outome of any onneted oriented

graph G in time O(|V (G)|2).

Note that for a tree, the number of edges is equal to the number of verties

minus one, and a onneted graph ontaining a yle is always an N -position.

Hene, we an onsider O(|V (G)|) = O(|E(G)|) for the redution part of the

algorithm sine �nding a yle is linear in the number of verties.

Though this is enough to ompute the outome of any orientation of

trees, it does not give us its Grundy-value, exept when we are onsidering a

P-position as they all have Grundy-value 0. The �rst redution we presented

in this subsetion may hange the Grundy-value of the position, but it is not

the ase of the seond redution. Looking further on that diretion, we tried

to �nd a more general redution that takes two leaf paths out of the same

vertex and replae them with only one leaf path out of that vertex, leaving

the rest of the graph unmodi�ed, and keeping the Grundy-value unhanged.
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With this, we would redue the tree to a path, and as we an ompute

the Grundy-value of a path relatively e�iently (see Theorem 2.26 below),

we would get an algorithm to ompute the Grundy-value of any orientation

of trees, leading to an algorithm to ompute the outome (and even the

Grundy-value) of any orientation of forests, and thus of any direted graph.

Unfortunately, doing this on general leaf paths is not possible, as shown in

Example 2.25.

Example 2.25 De�ne P1 and P2 two orientations of paths with vertex set

V (Pi) = {xi, yi, zi}

and ar set

A(Pi) = {(xi, yi), (zi, yi)}

for both i ∈ {1, 2}. Consider that the verties identi�ed with a vertex of

the rest of the tree are x1 and x2. Assume there is an orientation of a path

P3 satisfying the above onditions. Identifying x1 and x2 without adding

anything leaves a path with Grundy-value 2, so P3 should have Grundy-

value 2. The moves that would remove the rest of the tree should eah leave

the same value as one of the moves that would remove the rest of the tree in

our hoie of P1 and P2, beause we annot ensure that these values would

appear in the rest of the tree, so they all should have Grundy-value 0, and
there should be at least one for eah value left by a move that would remove

the rest of the tree in our hoie of P1 and P2 for the same reasons, so there

should be at least one move in P3 that would remove the rest of the tree

and leave a position with Grundy-value 0. Among all those potential ars,

we look at the one losest to the leaf of that leaf path, and all it a. If

there are any ars loser to the leaf, they are all pointing towards the leaf,

and the Grundy-value of those ars, that are left alone after a player would

have moved on a, is equal to the number of ars. Hene there are no loser

ar. There annot be any other ar in P3 that would remove the rest of

the tree, beause it would leave the ar a that still ould empty the graph,

whih means it would leave a position with Grundy-value di�erent from 0.
As the Grundy-value of P3 should be 2, the only possible P3 with the above

onditions is the graph with vertex set

V (P3) = {x3, y3, z3, t3}

and ar set

A(P3) = {(x3, y3), (y3, z3), (t3, z3)},

with the vertex we identify with a vertex of the rest of the tree being x3.
Unfortunately, if the rest of the tree is an isolated ar in whih we identify

the endpoint to a vertex of P1, P2 or P3, the two graphs do not have the

same Grundy-value: the one with P1 and P2 has Grundy-value 1 while the

one with P3 has Grundy-value 3.
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2.2.2.1 Paths

In the ase of paths, we an show additional results ompared to trees.

The same algorithm may be used, and we an even spare the redution of

Lemma 2.21.

Using CGSuite [37℄, we determined the number of P-positions on paths of
length 2n for small n's. Imputing them in the On-line Enylopedia of Integer

Sequenes [40℄ suggested that it orresponds to the nth
Catalan number,

and pointed at a referene [12℄, whih led to the following representation. A

position an be represented visually on a 2-dimensional graph on a lattie:

wath the path horizontally from left to right, start at (0, 0) and let an ar

direted leftward be a line joining the lattie points (x, y) and (x+ 1, y + 1)
and an ar direted rightward be the line joining (x, y) and (x+ 1, y − 1).

We all that representation the peak representation of a Timber position

on an orientation of a path.

A Dyk path of length 2n is one of these paths that also ends at (2n, 0)
and whih never goes below the x-axis. More formally, a Dyk path of length

2n is a path on a lattie starting from (0, 0) and ending at (2n, 0) whih steps

are of the form ((x, y), (x + 1, y + 1)) and ((x, y), (x + 1, y − 1)) where the

seond oordinate is never negative.

We note that an orientation of a path is a P-position if and only if its

peak representation is a Dyk path. This gives us the number of P-positions
that are paths of length 2k, the kth Catalan number ck = (2k)!

k!(k+1)! . And no

path of odd length is a P-position.
This is interesting sine there are few games where the number of

P-positions is known depending on the size of the data. Even for Nim whih

was introdued a entury ago, no general formula is known yet.

We now look at the Grundy-values of paths. All followers of a position

of a Timber position are Timber positions whose graphs are indued sub-

graphs of the original one, where two verties are in the same onneted

omponent if and only if they were in the same onneted omponent in the

original graph. When the graph is a path, the number of onneted indued

subgraphs is quadrati in the length of the path (E(G) − i + 1 hoies of

subgraphs with i edges, for any i). When you know the Grundy-values of

all the options of a game, the Grundy-value of this game an be omputed

in linear time. The number of options of a Timber position is the number

of its edges. It therefore su�es to ompute and store the Grundy-values of

all subpaths of an orientation of a path by length inreasing order to get the

Grundy-value of the original path in ubi time.

Theorem 2.26 We an ompute the Grundy-value of any orientation of

paths P in time O(|V (P )|3).



40 2.3. Perspetives
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Figure 2.19: Computing the Grundy-value of a path

Example 2.27 Figure 2.19 gives an example of a path and the Grundy-

value of all its subpaths, illustrating the algorithm: on the ith line are the

Grundy-values of subpaths of length i; on the jth olumn are the Grundy-

values of the subpaths whose leftmost ar is the jth of the original path. We

an onsider there is a 0th line whih only ontains 0's, but this is not ne-
essary as the �rst line always only ontains 1's. We underlined the Grundy-

value of the whole path.

To ompute the value in ase (i, j), that is the Grundy-value of the

subpath ontaining the kth ar for all k between i and i + j − 1, you look

at eah of these edges and build the set of Grundy-values of the options of

the subpath: you start with an empty set of values; if the kth ar is direted

toward the right, you add the value in ase (i, k − i) to your set; if the kth

ar is direted toward the left, you add the value in ase (k+1, i+ j−k−1)
to your set. The value you put in ase (i, j) is the minimum non-negative

integer that does not appear in the set you just built.

2.3 Perspetives

In this hapter, we looked at the games VertexNim and Timber.

In the ase of VertexNim, we gave a polynomial-time algorithm to �nd

the normal outome of any undireted graph with a token on any vertex,

as well as the outome of any strongly onneted direted graph with a self

loop on every vertex, and a token on any vertex. Then, we have a natural

question.
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Question 2.28 What is the omplexity of VertexNim played on a general

direted graph?

Looking at another variant of Nim played on graphs, Vertex NimG

[9, 43℄, our results seem to apply to the variant where a vertex of weight 0
is not removed (see [16℄), but they do not if it is removed. In partiular, in

the latter ase, the problem is pspae-omplete on graphs with a self loop

on eah vertex, even if the weight of verties is at most 2.

In the ase of Timber, we found the normal outome of any orientation

of trees, whih gives the normal outome of any onneted direted graph

in polynomial time, and gave an algorithm to �nd the Grundy-value of any

orientation of paths in polynomial time.

We are now left with the following problem.

Question 2.29 Is there a polynomial-time algorithm to �nd the Grundy-

value of any Timber position on orientations of trees?

Note that it would give the outome of any Timber position on direted

graphs, as a direted graph redues to an orientation of a forest having the

same Grundy-value by Theorem 2.14, and from that forest, we would be able

to ompute the Grundy-value of eah onneted omponents as they are all

trees and we just need to sum the values to �nd the Grundy-value of the

original position, whih also gives its outome.

The omplexity of the problem is the same as �nding the outome of any

Timber position on direted graphs, as a position has Grundy-value n if and

only if the seond player wins the game made of the sum of that position

with the orientation of a path with n ars, all direted toward the same leaf,

and the Grundy-value of a Timber position is bounded by its number of

ars.
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Chapter 3

Partizan games

Partizan games are the natural extension of impartial games where the

players may have di�erent sets of moves. We say that a game is partizan

whenever the moves are not neessarily equal for the two players, but parti-

zan games ontain impartial games as well.

As with impartial games, there exists a funtion that assigns a value

to any partizan game. Two games having the same value are equivalent

under normal play, and vie versa. Hene, we identify those values with the

anonial forms of the games they represent. As an example, the anonial

forms of numbers are reursively de�ned as follows (with n, k being positive

integers and m any integer):

0 = {·|·}
n = {n − 1|·}

−n = {·| − n+ 1}
2m+1
2k

= {2m
2k

|2m+2
2k

}

The order between games represented by numbers is the same as in Q2.

Unfortunately, many values are not numbers. For example, an impartial

game with Grundy-value n would be denoted as having value ∗n, exept
when n is 0 or 1, respetively denoted by 0 and ∗. Berlekamp, Conway and

Guy [4, 10℄ give a useful tool to prove some games are numbers:

Theorem 3.1 (Berlekamp et al. [4℄, Conway [10℄) [Simpliity the-

orem℄ Suppose for x = {xL|xR} that some number z satis�es z 
 xL and

z � xR for any Left option xL ∈ xL and any Right option xR ∈ xR, but
that no (anonial) option of z satis�es the same ondition (that is, for any

option z′ ∈ zL ∪ zR, there exists a Left option xL ∈ xL suh that z′ 6 xL or

there exists a Right option xR ∈ xR suh that z′ > xR). Then x = z.

In other words, if there is a number z satisfying z 
 xL and z � xR for

any Left option xL ∈ xL and any Right option xR ∈ xR, then x is equivalent

to the number with smallest birthday satisfying this property.

To simplify proofs, we often do not state results on the opposite of games

on whih we proved similar results. This an be justi�ed by the following

proposition.

Proposition 3.2 Let G and H be any two games. If G >+ H, then

−G 6+ −H. As a onsequene, G ≡+ H ⇔ −G ≡+ −H.
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Proof. Assume G >+ H. Then Left wins G −H = (−H) − (−G) playing
seond. Hene −H >+ −G. �

In this hapter, we onsider three partizan games: Timbush, Toppling

Dominoes and Col. Timbush is the natural partizan extension of Timber,

where some ars an only be hosen by one player. In setion 3.1, we de�ne

the game, prove that any position an be redued to a forest, as in Timber,

and give an algorithm to ompute the outome of any orientation of paths

and any orientation of trees where no ar an be removed by both players.

Toppling Dominoes is a variant of Timbush, where the graph is a forest

of paths and all ars are bidiretional. In setion 3.2, we de�ne the game,

prove the existene of some values appearing as onneted paths, and give

a uniity result about some of them. Col is a olouring game played on an

undireted graph. In setion 3.3, we de�ne the game and give the values of

graphs belonging to some in�nite lasses of graphs.

The results presented in Setion 3.1 are a joint work with Rihard

Nowakowski, while the results presented in Setions 3.2 and 3.3 are a joint

work with Paul Dorbe and Éri Sopena [14℄.

3.1 Timbush . . . . . . . . . . . . . . . . . . . . . . . 44
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3.1 Timbush

Timbush is the natural partizan extension of Timber, played on a direted

graph with ars oloured blak, white, or grey. On her move, Left hooses
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x

y

t

z

x'

y'

Figure 3.1: Playing a move in Timbush

a blak or grey ar (x, y) of the graph and removes it along with all that is

still onneted to the endpoint y in the underlying undireted graph. On his

move, Right does the same with a white or grey ar.

The desription of a position onsists of the direted graph on whih the

two players are playing, and a olouring funtion from the set of ars to the

set of olours {black,white, grey}. Note that the direted graph does not

need to be strongly onneted, or even onneted.

AllTimber positions areTimbush positions: just keep the same direted

graph and onsider all ars are grey.

In all the �gures, white ars are represented with dashed arrows, and

blak ars are thiker, to avoid onfusion between the olours.

Example 3.3 Figure 3.1 gives an example of a Left move. Left hooses to

remove the blak ar (x, y). The whole onneted omponent ontaining y
in the underlying undireted graph without the ar (x, y) is removed with

it. She ould not have hosen the ar (z, t) beause it is white, but the grey
ar (x′, y′) is allowed to her.

In this setion, we present algorithms to �nd the normal outome of

any oloured orientation of a path, and the normal outome of any oloured

onneted direted graph with no grey ar.

3.1.1 General results

First, we see how to adapt the results obtained on Timber to Timbush.

The redution to get an orientation of a forest from a direted graph without

hanging the value is the same, but we now have to take are of the olours

of the ars too. We aim at keeping them the same, but we still need to �nd

the olour of the ar we add, and we hoose the olour that gives the same

possibilities as those given by the yle. The proof follows the same pattern

as the proof of Theorem 2.14.
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Theorem 3.4 Let G be a direted graph seen as a Timbush position suh

that there exist a set of verties S that forms a 2-edge-onneted omponent

of G, and x, y two verties not belonging to G. Let G′
be the direted graph

with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and ar set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

keeping the same olours, where the olour of (y, x) is grey if the ars in S
yield di�erent olours, and of the unique olour of ars in S otherwise. Then

G ≡+ G′
.

Proof. Let H be any game suh that Left has a winning strategy on G+H
playing �rst (or seond). On G′+H, she an follow the same strategy unless

it reommends to hoose an ar between elements of S or Right hooses the

ar (y, x). In the �rst ase, she an hoose the ar (y, x), whih is still in

play sine any move removing (y, x) in G′
would remove all ars of S in G.

Both moves leave some H0 where Left has a winning strategy playing seond

sine the move in the �rst game was winning. In the seond ase, she an

assume he hose any ar of S and ontinue to follow her strategy. For similar

reasons, it is possible and it is winning.

The proof that Right wins G′+H whenever he wins G+H is similar. �

Again, we get the orollary that leaves us with a forest.

Corollary 3.5 For any direted graph G, there exists an orientation of a

forest FG suh that G ≡+ FG and FG is omputable in quadrati time.

Example 3.6 Figure 3.2 shows an example of a direted graph (on top) and

a orresponding forest (on bottom), obtained after applying the redution

from Theorem 3.4. Light grey areas surround the yles, whih are redued

to the grey verties of the forest. The white verties denote the verties of

degree 1 we add with an out-ar toward those grey verties. There might be

several suh forests depending on the hoie of the omponent used for the

redution, but they all share the same value. Choosing maximal 2-onneted

omponents when reduing leads to a unique forest with least number of

verties.

We an also adapt the proposition giving us a redution removing leaf-

paths with ars direted from the leaf, but we also need to pay attention to

the olours, whih gives extra onditions.
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Figure 3.2: A Timbush position and a orresponding orientation of a forest
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Proposition 3.7 Let T be an orientation of a tree suh that there exist three

sets of verties {ui}06i6k,{vi}06i6k,{wi}06i6ℓ ⊂ V (G) suh that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ ⊂ A(G).

2. {(uk, w0), (vk, wℓ)}) ⊂ A(G).

3. u0 and v0 have in-degree 0 and out-degree 1.

4. for all 1 6 i 6 k, ui and vi have in-degree 1 and out-degree 1.

5. for all 1 6 i 6 k, (ui−1, ui) and (vi−1, vi) have the same olour.

6. (uk, w0) and (vk, wℓ) have the same olour.

Let T ′
be the orientation of a tree with vertex set

V (T ′) = V (T )\{vi}06i6k

and ar set

A(T ′) = A(T )\({(vi−1, vi)}16i6k ∪ {(vk, wℓ)})

keeping the same olours. Then T ≡+ T ′
.

Proof. The proof is similar to the one of Theorem 3.4, playing on (vi−1, vi)
or (ui−1, ui) is similar (as well as (vk, wℓ) and (uk, w1)), and no move apart

from some (vj−1, vj) (and (vk, wℓ)) would remove the ar (ui−1, ui) without
removing the ar (vi−1, vi). �

We now fous on trees again. Before going to spei� ases, we give the

analog of Lemma 2.19 in the partizan version. Note again that it sometimes

hanges the value of the game, and it sometimes does not, using the same

examples as in Figures 2.13 and 2.14 as all positions of Timber are positions

of Timbush.

Lemma 3.8 Let T1, T2 be two Timbush positions. Choose y ∈ V (T1),
z ∈ V (T2) and let x be a vertex not belonging to V (T1) or V (T2). Let T
be the position with vertex set

V (T ) = V (T1) ∪ {x} ∪ V (T2)

and ar set

E(T ) = E(T1) ∪ {(x, y), (x, z)} ∪E(T2)

where (x, y) and (x, z) are either both grey or of non-grey di�erent olours

and the other ars keep the same olours. Let T ′
be the position with vertex

set

V (T ′) = V (T1) ∪ V (T2)
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where y and z are identi�ed, and ar set

E(T ′) = E(T1) ∪ E(T2)

keeping the same olours for all ars. Then o+(T ) = o+(T ′).

Proof. We show it by indution on the number of verties of T ′
. If

V (T ′) = {y}, then there is no move in T ′
and T is either 1 + (−1) = 0 or

∗ + ∗ = 0. Hene o+(T ) = P = o+(T ′). Assume now |V (T ′)| > 1. Assume

Left has a winning move in T . This winning move annot be by hoosing

(x, y) or (x, z) beause Right would hoose the other move and win. If the

hosen ar removes x from the game, hoosing the same ar in T ′
leaves

the same position. Otherwise, hoosing the same ar in T ′
leaves a position

whih has the same outome by indution. Hene Left has a winning move

in T ′
. The proof that Left has a winning move in T if she has one in T ′

and that Right has a winning move in T if and only if he has one in T ′
are

similar. �

Example 3.9 Again, the redution is from T to T ′
. Figures 3.3 and 3.4

illustrate the redution by giving an example of an orientation of a tree and

its image after redution. Not even one player has a move that empties the

initial graph, so we try to �nd a smaller graph with the same outome. The

ars in light grey areas are the ones we ontrat, and the redution annot be

applied anywhere else on the �rst tree. The dark grey area indiates a pair

of ars going out a degree-2 vertex, whih annot be ontrated beause its

olours do not math the statement of Lemma 3.8. However, the redution

an again be applied on the ars in the light grey areas of the seond tree

(and only on them).

3.1.2 Paths

Though �nding an e�ient algorithm whih gives the normal outome of any

orientation of trees has eluded us, we an determine the normal outome of

any orientation of paths.

On paths, we an ode the problem with a word. The letter K (resp. C,
Q) would represent a blak (resp. grey, white) ar direted leftward, while

Y (resp. J , D) would represent a blak (resp. grey, white) ar direted

rightward. Let w = w1w2 · · ·w|w|.

As in Setion 2.2, we an see it as a row of dominoes, eah oloured blak,

grey or white, that would topple everything in one diretion when hosen,

where hosen dominoes an only be toppled fae up, with Left only being

allowed to hoose blak or grey dominoes, and Right only being allowed to

hoose white or grey dominoes. The position is read from left to right.

Example 3.10 Figure 3.5 shows an orientation of a path, the row of domi-

noes and the word used for oding it.
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Figure 3.3: An orientation of a tree seen as a Timbush position

Figure 3.4: Its image after redution, having the same outome
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KQYJYQKJCKDKDJ

Figure 3.5: A Timbush position, the orresponding row of dominoes and the

orresponding word

We say a domino is right-topplable if it orresponds to an ar direted

rightward, that is if it is represented by a Y , a J or a D. Likewise, a domino

represented by a K, a C or a Q is said to be left-topplable.

The next lemma is quite useful as it tells us that if we have a winning

move for one player, then the only possible winning move going in the same

diretion for the other player is the exat same move, if available. This is

natural as if they were di�erent winning moves, one player would be able to

play their move after the other player, and leave the same position as if they

had played it �rst. Nevertheless, it is still possible for one player to have

several winning moves going in the same diretion when their opponent has

no winning move going in that diretion. And it is also possible that the two

players have di�erent winning moves, if they topple in di�erent diretions.

Lemma 3.11 If both players have a winning move toppling rightward, then

these moves are on the same domino.

Proof. Assume Left has a winning move toppling the right-topplable domino

wi and Right has a winning move toppling the right-topplable domino wj .

If i < j, after Right topples wj , Left an topple wi, leaving the game in

the same position as if she had toppled wi right in the beginning, whih is

a winning move, and toppling wj was not winning for Right. The proof is

similar if i > j. �

We de�ne the following three sets of words:

L = {KY,KJ} ∪ {CY DnY,CY DnJ}n∈N
R = {QD,QJ} ∪ {CDY nD,CDY nJ}n∈N
E = {KD,CJ,QY }

The reader would have reognised E as the set of subwords that an be

deleted without modifying the normal outome of the path using Lemma 3.8.

In the following, we then often assume the position does not ontain any

element of E as a subword.
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The sets L and R would represent the sets of subwords that Left and

Right would need to appear �rst to have a winning move on a right-topplable

domino when the redued word starts with a left-topplable domino, as we

prove in Lemma 3.13.

The next lemma gives information on subwords of a word representing a

Timbush position. In partiular, it helps eliminating ases when we prove

Lemma 3.13.

Lemma 3.12 Let w be a word starting with a C and ending with a J suh

that all dominoes are right-topplable exept the �rst one. Then w ontains a

subword in L ∪R ∪ E.

Proof. If w2 = J , then w1w2 = CJ ∈ E. Assume w2 = Y . Let

k = min{i > 3 | wi ∈ {Y, J}}. The index k is well-de�ned as w|w| = J , and
w1w2 · · ·wk ∈ L. We an prove that w ontains a subword in R if w2 = D
in a similar way. �

The next lemma gives a winning move toppling right when it exists and

the word starts with a left-topplable domino (when the word starts with a

right-topplable domino, toppling that domino is a winning move). We here

assume the word ontains no subword belonging to E, as removing them

does not hange the outome of the position.

Lemma 3.13 Let w be a word with no element of E as a subword, that

starts with a left-topplable domino. Let x be the leftmost ourrene of an

element of L ∪R as a subword of w if one exists. Then:

• if x ∈ L, Left is the only player having a winning move in w toppling

rightward

• if x ∈ R, Right is the only player having a winning move in w toppling

rightward

• if no suh x exists, no player has a winning move in w toppling right-

ward.

Proof. First assume no element of L ∪ R appears as a subword of w. As

{KY,KJ,KD,QY,QJ,QD} ⊂ L∪R∪E, no K or Q domino an be followed

by a right-topplable domino in w. If there was a J domino, the rightmost

left-topplable domino at its left would be a C domino. But then, it would

ontain a subword in L ∪R ∪ E by Lemma 3.12. And suh a left-topplable

domino exists as w1 is left-topplable. So there are no J domino in w. If Left
topples a Y domino, the rightmost left-topplable domino at its left would be

a C domino. If that C domino is not immediately followed by the Y domino

Left toppled, it would be followed by a D domino, otherwise there would be

a subword of w whih is in L. Then, toppling that C domino is a winning

move for Right. We an prove that toppling a D domino is not a winning

move for Right in a similar way.
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Now assume x exists and is in L. We show that toppling the rightmost

domino of x is a winning move for Left. Let w′
be the resulting position after

this move. The position w′
ontains no element of L∪R∪E as a subword and

starts with a left-topplable domino, so Right has no winning move toppling

rightward. Hene, we an assume Right would topple a domino leftward.

If Right topples a domino whih is not part of x, Left topples the leftmost

domino of x, whih is a winning move. Otherwise, x = CY DiY or CYDiJ
for some i and Right would have toppled the C domino, whih leaves an

L-position. We now show that no Right's move toppling rightward in w is

winning. By Lemma 3.11, if Right has a winning move toppling rightward,

it would be by toppling the rightmost domino of x. But then, Left wins by
toppling the leftmost domino of x.

We an prove that Right is the only player having a winning move top-

pling rightward if x exists and is in L in a similar way. �

Example 3.14 Figure 3.6 gives three rows of dominoes, with the words

oding it, eah of them starting with a left-topplable domino and having no

subword in E. On the �rst row, the leftmost apparition of a subword in L∪R
is KJ , so Left an win the game playing �rst by toppling that J domino. On

the seond row, the leftmost apparition of a subword in L ∪R is CDY Y D,

so Right an win the game playing �rst by toppling that last D domino. On

the third row, the word ontains no subword of L ∪ R, so no player has a

winning move toppling rightward. On the �rst two rows, that winning move

is underlined, and the domino orresponding is pointed at. Note that there

might be other winning moves toppling rightward, the seond J of the �rst

row for instane.

When a word starts with a right-topplable domino, hoosing it is a win-

ning move. Using that with Lemmas 3.11 and 3.13, we an �nd whih player

an win toppling a domino rightward. As the same observations an be made

about left-topplable winning moves, we get the outome of any word in linear

time.

Theorem 3.15 We an ompute the outome of any word w in time O(|w|).

We end this study on paths by giving a haraterisation of Timbush

P-positions on paths.

Theorem 3.16 Let w be a word representing a Timbush P-position, suh
that no subword of w is in E. Then w is the empty word.

Proof. Assume w is not the empty word. As it is a P-position, it starts
with a left-topplable domino, and it has no word of L or R as a subword.

Therefore, we an prove, as in the proof of Lemma 3.13, that it ontains no

J domino. By symmetry, it does not ontain any C domino. But neither
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CCDDYKJJCQQDKQCY

QKCDYYDYCKYDJDCCKQJ

KCYQQCKCDYYYCKQKQ

Figure 3.6: Words representing Timbush positions with a winning move toppling

rightward underlined when it exists

a K domino nor a Q domino an be followed by a right-topplable domino

without w having a subword belonging to L∪R∪E. Hene all dominoes are

left-topplable. But that would mean the last domino is left-topplable, and

whoever plays it wins the game, ontraditing the fat that w is a P-position.
Hene w has to be the empty word. �

We an therefore ount the number of Timbush path P-positions of

length 2n, given by the formula 3ncn, where cn is the nth
Catalan number

(2n)!
n!(n+1)! , as well as onlude there would be no Timbush path P-positions
of odd length.

3.1.3 Blak and white trees

We now look at general orientations of trees again, but add a restrition on

the olours used, by forbidding any ar to be oloured grey.

Note that direted graphs having no grey ar might have grey ars that

appear when redued to orientations of forests using Theorem 3.4, if they

ontain a two-oloured yle, but for suh onneted graphs, the outome is

always N . It is also possible to get a blak and white oloured orientation

of a forest equivalent to the original graph by dupliating eah grey ar with

the leaf from whih it originates, leaving a blak ar and a white ar.

Example 3.17 Figure 3.7 shows an example of a direted graph (on the

left) and a orresponding forest (on the right), obtained after applying the
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redution from Theorem 3.4 and replaing eah grey ar by a blak ar

and a white ar. Light grey areas surround the yles, whih are redued

to the grey verties of the forest. The white verties denote the verties

of degree 1 we add with an out-ar toward those grey verties. When the

2-onneted omponent is monohromati, we only add one of these white

verties, whereas we add two if it ontains both blak ars and white ars.

There might be several suh forests depending on the hoie of the omponent

used for the redution, but they all share the same value. Choosing maximal

2-onneted omponents when reduing leads to a unique forest with least

number of verties.

Lemma 3.8 ats as Lemma 2.19, but we also need to �nd analogous of

Lemma 2.18 and 2.21 to �nd the outome of a blak and white tree.

We �rst reall the de�nition of a leaf-path: a leaf-path is a path from a

vertex x to a leaf y, with x 6= y, onsisting only of verties of degree 2, apart
from y and possibly x.

The next lemma is analogous to Lemma 2.18, that is a way to �nd a

winning move in a minimal position, though it may appear in non-minimal

positions as well. Nevertheless, in a non-minimal position, we would need to

�nd a winning move for eah player to be able to stop the analysis without

reduing any more.

Lemma 3.18 Let T be a blak and white oloured orientation of a tree suh

that there is a leaf v of T with out-degree 1 or a vertex u with in-degree

0 and out-degree 2 from whih there is a leaf-path in whih all ars are

direted toward the leaf. If all ars inident with v or u are blak, then

T ∈ L+ ∪ N+
, that is Left wins the game playing �rst. If they are all white,

then T ∈ R+ ∪ N+
.

Proof. Assume we are in the �rst ase, with the ar inident to v being

blak. Let x be the out-neighbour of v. If Left starts, she wins by toppling

the domino on the ar (v, x), as that move empties the graph.

Assume now we are in the seond ase, with the ars inident to u being

blak. Let x be the out-neighbour of u further from the leaf onsidered in

the leaf-path. If Left starts, she wins by toppling the domino on the ar

(u, x), as Right will never be able to remove the other ar inident to u and

Left empties the graph when she plays it.

The proof of the ases where the ars inident to v or u are white is

similar. �

The next lemma is an analogous of Lemma 2.21, that is a way to trans-

form two leaf-paths with all ars direted towards the leaves into only one

leaf-path. As in Lemma 2.21, the game after redution is equivalent in nor-

mal play to the game before redution.
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Figure 3.7: A blak and white Timbush position and a orresponding blak and

white orientation of a forest
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Lemma 3.19 Let T0 be a blak and white oloured orientation of a tree,

u ∈ V (T0) a vertex, and n,m, ℓ ∈ N three integers. Let P1 (resp. P2, P3) be

a blak and white oloured orientation of a path with vertex set

{xi}06i6n(resp. {yi}06i6m, {zi}06i6ℓ)

and ar set

{(xi, xi+1)}06i6(n−1)(resp. {(yi, yi+1)}06i6m−1, {(zi, zi+1)}06i6ℓ−1).

Let T be the position with vertex set

V (T ) = V (T0) ∪ V (P2) ∪ V (P3)

where u, y0 and z0 are identi�ed and ar set

A(T ) = A(T0) ∪A(P2) ∪A(P3)

sharing the same olours as in T0, P2 or P3.

Let T ′
be the position with vertex set

V (T ′) = V (T0) ∪ V (P1)

where u and x0 are identi�ed and ar set

E(T ′) = E(T ) ∪ E(P1)

sharing the same olours as in T0 or P1.

Then o+(T − T ′) = o+(P2 + P3 − P1).

Proof. We prove it by indution on |V (T0)|+ n+m+ ℓ. If n+m+ ℓ = 0,
T = T0 = T ′

, P1 = P2 = P3 = {·|·} and o+(T −T ′) = P = o+(P2+P3−P1).

Assume now |V (T0)|+ n+m+ ℓ > 0. Assume Left has a winning move

in P2 +P3 −P1. She an play that move in T −T ′
, whih is a winning move

by indution hypothesis. Similarly, we an prove Right has a winning move

in T − T ′
if he has one in P2 + P3 − P1. Assume now Left has no winning

move in P2 + P3 − P1, i.e. P2 + P3 − P1 6 0. Any direted edge of T0 is

both in T and T ′
, thus if Left hooses suh an edge in one of T or −T ′

then

Right an hoose the orresponding ar in −T ′
or T , whih leaves either a

P-position if the move topples u or if P2 + P3 − P1 = 0 by indution, or an

R-position by indution otherwise. Assume Left hooses an ar of P2, P3 or

−P1 in the game T−T ′
. As these paths are numbers that only have numbers

as options (by Berlekamp's rule [4℄), it an only derease the value of the

remaining path, so it is a losing move by indution hypothesis. Similarly, we

an prove Right has no winning move in T − T ′
if he has no winning move

in P2 + P3 − P1. �
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By replaing two leaf-paths with all ars direted towards the leaves by

one leaf-path having the value of the sum of their values and all ars direted

towards its leaf, we therefore get an equivalent position. This replaement

is always possible as a path with all ars direted toward the same leaf an

be seen as a Hakenbush string rooted on the vertex with in-degree 0 (and
this transformation is a bijetion); all blak and white Hakenbush strings

yield dyadi number values, and any dyadi number value an be obtained

by a unique blak and white Hakenbush string using Berlekamp's rule [4℄.

Example 3.20 Figures 3.8 and 3.9 illustrate the redution by giving an ex-

ample of an orientation of a tree and its image after redution. On the initial

graph, Left an win by playing the a ar, but we still need to know if Right

has a winning move to determine if it is an N -position or an L-position. The
redution from Lemma 3.8 annot be applied, so we use the other redution

to get a smaller tree having the same outome (even better, having the same

value). Light grey areas on the �rst tree surround the leaf-paths we merge,

and the redution annot be applied anywhere else on the �rst tree. Eah

of these leaf-paths starts with a grey vertex and all other verties are white.

The same pattern is used on the seond tree to detet the new path obtained

by merging those of the �rst tree. The redution an again be applied on the

seond tree, on paths surrounded by light grey areas, and even the redution

from Lemma 3.8 on the ars surrounded by the dark grey area.

Lemma 3.19 is true even if some of the ars are grey, but in this ase, it

is not always possible to �nd a single leaf-path whose value is the sum of the

two original ones.

As in Setion 2.2, a position for whih we annot apply the redution

from Lemma 3.8 or Lemma 3.19 is alled minimal. For the same reason as

in Lemma 3.11, to have both players having in the same leaf-path a winning

move toppling not toward the leaf of that leaf-path, it would have to be by

toppling the same domino, whih is not possible here sine we are dealing

with blak and white Timbush positions. From Lemma 3.18, we know what

suh a winning move looks like and Lemma 3.13 tells us that only leaf-paths

satisfying hypothesis of Lemma 3.18 may have a winning move toppling the

rest of the tree when the position is minimal. In a minimal position, a leaf-

path where no player has a winning move not toppling toward the leaf must

have all ars direted toward the leaf, as otherwise we ould redue the game

using Lemma 3.8. Therefore, we get the following lemma about P-positions.

Lemma 3.21 A minimal position with outome P an only be a graph with

no ar.

Proof. Let T be a minimal position with at least one ar. If it has exatly

one ar, it is obviously in L ∪ R, depending of the ar olour, so we an

assume T has at least two ars. Then there exists a vertex w at whih there
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a

Figure 3.8: An orientation of a tree seen as a Timbush position

Figure 3.9: Its image after redution, having the same outome
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are two leaf-paths {xi}06i6n and {yi}06i6m (x0 = w = y0). If (xn, xn−1) or
(ym, ym−1) is an ar, the player whih an topple it an hoose it and win

playing �rst. Now assume both (xn−1, xn) and (ym−1, ym) are ars. As T
is minimal, it annot be redued using Lemma 3.8, so if one of (xi+1, xi),
(yi+1, yi), (x1, w) or (y1, w) is an ar, the one with verties of greater index,

say (xi+1, xi), has to share the olour of the ar (xi+1, xi+2). Then the player

whih an topple (xi+1, xi) an hoose it and win playing �rst. Assume now

all (xi, xi+1), (yi, yi+1), (w, x1) and (w, y1) are ars. Then we an apply the

redution from Lemma 3.19, whih is a ontradition. �

Finding the outome of a minimal position now beomes a formality. If

there is no ar, we are dealing with a P-position. If there is just one ar, the
outome is L if the ar is blak and R if it is white. When there are two ars

or more, we hek in eah leaf-path who has a winning move not toppling

the leaf of that leaf-path. If both players have suh a move, we are dealing

with an N -position. Otherwise, the only player who has suh a move, and

suh a player exists sine there is a vertex at whih there are two leaf-paths

and one of these paths has to yield suh a winning move for the same reason

as in the proof of Lemma 3.21 sine the position is minimal, wins the game

whether they play �rst or seond. Indeed, if the other player does not play

an ar of a leaf-path, it leaves a vertex at whih there were two leaf-paths

whih are still there and where the former player an win; if they play on an

ar of a leaf-path that topples toward the leaf of that leaf-path, the situation

is the same unless the tree was a path from the beginning and Lemma 3.13

(and its ounterpart on left-topplable winning moves) ould onlude even

before the move was played; if they play on an ar of a leaf-path that does

not topple toward the leaf of that leaf-path, it annot be a winning move by

assumption. Note that the redution from Lemma 3.8 dereases the number

of verties without inreasing the number of leaves, and the redution from

Lemma 3.19 dereases the number of leaves without inreasing the number

of verties, so they an only be applied a linear number of times. As �nding

where to apply the redution an be done in linear time, this leads to a

quadrati time algorithm.

Theorem 3.22 We an ompute the outome of any blak and white on-

neted oriented graph G in time O(|V (G)|2).

Note that for a tree, the number of edges is equal to the number of

verties minus one, and the redution to get an orientation of a tree from a

onneted oriented graph ontaining a yle an be done in time O(|V (G)|2).
Hene, we an onsider O(|V (G)|) = O(|E(G)|) for the seond part of the

algorithm.
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Figure 3.10: A row of dominoes and the orresponding Timbush position

3.2 Toppling Dominoes

Toppling Dominoes is a partizan game, introdued by Albert

Nowakowski and Wolfe in [1℄, played on one or several rows of dominoes

oloured blak, white, or grey. On her move, Left hooses a blak or grey

domino and topples it with all dominoes (of the same row) at its left, or

with all dominoes (of the same row) at its right. On his turn, Right does

the same with a white or grey domino.

To desribe a one row Toppling Dominoes game, we just give the

word formed by the olours of its dominoes read from left to right. The

blak, white and grey dominoes are also symbolised respetively by an L (for

Left or bLak), an R (for Right ≈ white) and an E (for Either or grEy). For

example, LLERR represents a Toppling Dominoes game with two blak

dominoes followed by a grey then two white dominoes.

A Toppling Dominoes position with n dominoes an be seenas a Tim-

bush position on a path with 2n ars, eah domino being represented by

two ars sharing the same olour (as the domino) pointing toward the same

vertex. See Figure 3.10 for an example.

A �rst easy observation on Toppling Dominoes is that the only game

on one row that has outome P is the empty row. Indeed, if there is at least

one domino, any player who an play a domino at one end of the line an

win playing �rst. So if both extremities of the game are blak, the game

has outome L, if both are white, the game has outome R, otherwise the

game has outome N . This uniqueness of the 0 game is rather unusual, and

a natural question that arises is the following :

Question 3.23 In the game Toppling Dominoes, are there many equiva-

lene lasses with a unique element onsisting of only one row? Or are there

many games with few representations in a single row?

Some initial study of this question was given by Fink, Nowakowski, Siegel

and Wolfe in [17℄. They gave muh redit to this question with the following

result:

Theorem 3.24 (Fink et al. [17℄) All numbers appear uniquely in Top-

pling Dominoes, i.e. if two games G and G′
have value a same number,

then they are idential.

A nie orollary of this result is that numbers in Toppling Dominoes

are neessarily palindromes, sine they equal their reversal. In the following,
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for a given number x, we denote by x the unique Toppling Dominoes

game with value x.

Fink et al. onlude [17℄ with a series of onjetures, some of whih

are inspired by Theorem 3.24. They reformulate Theorem 3.24 as follows,

expliitly desribing for a number x the unique Toppling Dominoes games

with value x.

Theorem 3.25 (Fink et al. [17℄) If a game G has value a number in

anonial form {a|b}, then G is the Toppling Dominoes game aLRb.

Their �rst onjeture was that a similar result is also true when a and b
are numbers but not the resulting game:

Conjeture 3.26 (Fink et al. [17℄) Let a and b be numbers with a > b,
the game {a|b} is given (uniquely) by the Toppling Dominoes game aLRb.

In the following, we settle this onjeture. We �rst prove that the game

aLRb is indeed the game {a|b}, but we then show that aEb also has value

{a|b}. However, we prove that there are no other Toppling Dominoes

game with that value, namely:

Theorem 3.27 Let a > b be numbers and G be a Toppling Dominoes

game. The value of G is {a|b} if and only if G is aLRb, aEb or one of their

reversals.

The proof of this result is given in Subsetion 3.2.2. Fink et al. proposed

two similar onjetures in [17℄, for the games

{
a
∣∣{b|c}

}
and

{
{a|b}

∣∣{c|d}
}
.

Conjeture 3.28 (Fink et al. [17℄) Let a, b and c be numbers with

a > b > c. The game

{
a
∣∣{b|c}

}
is given (uniquely) by the Toppling Domi-

noes game aLRcRLb.

Conjeture 3.29 (Fink et al. [17℄) Let a, b, c and d be numbers with

a > b > c > d. The game

{
{a|b}

∣∣{c|d}
}
is given (uniquely) by the Toppling

Dominoes game bRLaLRdRLc.

We propose the following results to settle the onjetures.

Theorem 3.30 If a > b > c are numbers, then aLRcRLb has value{
a
∣∣{b|c}

}
. Moreover, if a > b, then aEcRLb also has value

{
a
∣∣{b|c}

}
.

Theorem 3.31 If a > b > c > d are numbers, then both bRLaLRdRLc
and bRLaEdRLc have value

{
{a|b}

∣∣{c|d}
}
.

The proofs of these results are given respetively in Appendies B.1

and B.2, as they use the same kind of argument as the proof of Theorem 3.27.

Note also that Conjeture 3.29 is not true when b = c. Indeed, the

game

{
{a|b}

∣∣{b|d}
}
has value b, and therefore has a unique representation

by Theorem 3.24.

In the following, we prove Theorem 3.27, but �rst we prove in Subse-

tion 3.2.1 some useful preliminary results.
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3.2.1 Preliminary results

In the following, for a given Toppling Dominoes game G, we denote by

GL+

(respetively GR+

) any game obtained from G by a sequene of Left

moves (respetively of Right moves). We sometimes allow this sequene to

be empty, and then use the notations GL∗

and GR∗

. We also often denote

the anonial Left and Right options of a game x whose value is a number

by xL0
and xR0

respetively.

In [17℄, Fink et al. proved the following :

Theorem 3.32 (Fink et al. [17℄) For any Toppling Dominoes game

G,
LG > G .

Atually, when the game is a number x, they also proved that xL+

< x.
We extend both their results for numbers to the following lemma, involving

a seond number y not too far from x:

Lemma 3.33 Let x, y be numbers.

• If y < x+ 1, or y < xR0
when x is not an integer, then

{
y < Lx

y < xR+

for any game xR+

• If x− 1 < y, or xL0 < y when x is not an integer, then

{
xR < y

xL+

< y for any game xL+

Proof. We give the proof for y < x + 1 and for y < xR0
, the proof for

x− 1 < y and for xL0 < y being similar. We prove the result by indution

on the birthday of y, and the number of dominoes in x. When x = 0, the
result is obvious.

Consider �rst the ase when x is an integer, and let y be a number

suh that y < x + 1. Assume �rst x > 0. By Theorem 3.24, there is

a unique Toppling Dominoes game with value x, namely x = Lx
. We

then get Lx = Lx+1 = x + 1 > y. Moreover, there is no Right option to

x. So the result holds. Assume now x < 0, that is x = R|x|
. We have

Lx = LR|x| = {0|x + 1} whih is more than y sine both Left and Right

options are numbers and more than y. Moreover, any game xR+

is of the

form Rk = −k with x+1 ≤ −k ≤ 0 so any suh xR+

is more than y. So the

result holds.

Consider now the ase when x is a number but not an integer, of anonial

form {xL0 |xR0}. Let y be a number suh that y < xR0
. Reall that by

Theorem 3.25, x = xL0LRxR0
. Note that xR0 − xL0 ≤ 1, and when de�ned,

(xL0)R0 > xR0
and (xR0)L0 ≤ xL0

.
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To prove Lx > y, we an just prove that whoever plays �rst, Left has a

winning strategy in Lx − y = LxL0LRxR0 − y. When Left starts, she an

move to LxL0 − y. Sine xL0
is born earlier than x and y < xR0 ≤ (xL0)R0

(or y < xR0 ≤ xL0 +1 if xL0
is an integer), we an use indution and get y <

LxL0
. Thus LxL0 − y is positive and Left wins. Now onsider the ase when

Right starts; we list all his possible moves from Lx − y = LxL0LRxR0 − y.
If Right plays in −y, we get

• Lx + (−y)R0
. We have (−y)R0 = −(yL0) and yL0 < y < xR0

. Thus

applying indution, we get Lx > yL0
and thus Lx + (−y)R0 > 0, so

Left wins.

Suppose now Right moves in LxL0LRxR0
. Toppling rightward, Right an

move to:

• L(xL0)R− y. By Theorem 3.32, L(xL0)R− y > (xL0)R− y. Moreover,

sine y < xR0 ≤ (xL0)R0
, we have by indution (xL0)R > y. Thus

L(xL0)R − y is positive and Left wins.

• LxL0L − y whih is more that LxL0 − y by Theorem 3.32, whih is

positive as proved earlier. Thus Left wins.

• LxL0LR(xR0)R − y. Then Left an answer to LxL0 − y whih again

is positive as proved earlier, and win.

Toppling leftward, Right an move to:

• (xL0)RLRxR0−y. Then Left an answer to (xL0)R−y whih is positive
as proved earlier.

• xR0 − y, positive by initial assumption.

• (xR0)R − y. We have (xR0)R0 > xR0 > y, so by indution (xR0)R > y
and Left wins.

We now prove by indution that xR+

> y for any xR+

. A game

xR+

=
(
xL0LRxR0

)R+

may take seven di�erent forms, namely:

•
(
xL0

)R+

, larger than y by indution sine

(
xL0
)R0

> xR0 > y.

•
(
xL0

)R+

L, whih is larger than

(
xL0

)R+

, thus also larger than y.

• xL0L, larger than y by indution sine

(
xL0
)R0

> xR0 > y.

•
(
xR0

)R+

, larger than y by indution sine

(
xR0

)R0 > xR0 > y.
• xR0

, larger than y by our initial assumption.

•
(
xL0

)R+

LR
(
xR0

)R∗

. In this ase, we show that Left has a win-

ning move in

(
xL0

)R+

LR
(
xR0

)R∗

− y. When playing �rst, she

an move to

(
xL0

)R+

− y that we already proved to be posi-

tive. When playing seond, we may only onsider Right's move

to

(
xL0

)R+

LR
(
xR0

)R∗

+ (−y)R0
, to whih she answers similarly to

(
xL0

)R+

+ (−y)R0
, also positive sine (−y)R0 > −y.

• xL0LR
(
xR0

)R+

= x′
. If y ≤ xL0

, then Left wins in x′ − y by playing

to xL0 − y or xL0 + (−y)R0
. Otherwise, we proeed by indution on
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the birthday of y and the number of dominoes in x′
. If Right starts in

x′
, we an use indution diretly and get that Left wins. If he starts

in −y, sine (−y)R0 > −y, we an also apply indution. Now if Left

annot win when starting, we have x′ − y is P, so x′ = y. Yet, y is

a number suh that xL0 < y < xR0
, so y is not born earlier than x.

So by Theorem 3.25, x is a subword of y and as x′
is a strit subword

of x, x′ 6= y. By uniity (Theorem 3.24), x′ 6≡+ y, whih yields a

ontradition.

�

This gives us the following orollary.

Corollary 3.34 If a > b > c > d are numbers, then aR
+

> {a|b},
aR

+

>
{
a
∣∣{b|c}

}
, aR

+

>
{
{a|b}

∣∣c
}
and aR

+

>
{
{a|b}

∣∣{c|d}
}
.

Proof. By Lemma 3.33, we know that aR
+

> a+aR0

2 whih itself is a number

larger than a, b, c and d. The inequalities follow. �

3.2.2 Proof of Theorem 3.27

We now haraterise the positions on one row having value {a|b}, for any
numbers a > b. We start by proving that aLRb is among those positions,

and we �rst prove a preliminary lemma on options of aLRb.

Lemma 3.35 Let a, b be numbers suh that a > b. For any Right option bR

obtained from b toppling rightward, we have aLRbR > b.

Proof. To prove that aLRbR > b, we an just prove that Left has a winning

strategy in aLRbR − b whoever plays �rst. When Left starts, she an move

to a− b, and sine a− b > 0, reah a game whih is P or L, thus win. Now
onsider the ase when Right starts, and his possible moves from aLRbR−b.
If Right plays in −b, we get

• aLRbR + (−b)R. Reall that sine b is taken in its anonial form, −b
has at most one Right option, namely (−b)R0

. Here Left an answer

to a+ (−b)R0
whih is positive sine (−b)R0 > −b > −a. Therefore it

is a winning position for Left.

Consider now Right's possible moves in aLRbR
. Toppling rightward, Right

an move to:

• aR − b. Using Lemma 3.33 with x = y = a, we get aR > a, and sine

a > b, aR − b > 0.
• aL− b. Again, by Lemma 3.33, aL− b > 0 and Left wins.

• aLR(bR)R − b. Then Left an answer to a− b, leaving a game in L or

in P sine a− b > 0, thus win.

Toppling leftward, Right an move to:
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• aRLRbR − b. Then Left an answer to aR − b whih is positive as

proved above.

• bR − b whih is positive by Lemma 3.33.

• (bR)R − b, again positive by Lemma 3.33.

�

We an now state the following laim.

Claim 3.36 Let a, b be numbers suh that a > b. We have aLRb = {a|b}.

Proof. To prove that aLRb = {a|b}, we prove that the seond player has a

winning strategy in aLRb−{a|b}. Without loss of generality, we may assume

Right starts the game, and onsider his possible moves from aLRb− {a|b}.
If Right plays in −{a|b}, we get

• aLRb− a. Then Left an answer to a− a whih has value 0.

Consider now Right's possible moves in aLRb. Toppling rightward, Right

an move to:

• aR − {a|b}. Then Left an answer to aR − b, whih is positive.

• aL− {a|b}, whih is positive by Corollary 3.34.

• aLRbR−{a|b}. Then Left an answer to aLRbR−b, whih is positive

by Lemma 3.35.

Toppling leftward, Right an move to:

• aRLRb−{a|b}. Then Left an answer to aR−{a|b}, whih is positive

by Corollary 3.34.

• b− {a|b}. Then Left an answer to b− b whih has value 0.
• bR − {a|b}. Then Left an answer to bR − b whih is positive.

�

As an example, here is a representation of {2|34}:

We now prove that aEb also has value {a|b}, and we again need to prove

�rst a preliminary lemma on options of aEb.

Lemma 3.37 Let a, b be numbers suh that a > b. For any Right option bR

obtained from b toppling rightward, we have aEbR > b.

Proof. We prove that Left has a winning strategy in aEbR − b whoever

plays �rst. When Left starts, she an move to a− b, reahing a game that is

P or L, thus win. Now onsider the ase when Right starts, and his possible

moves from aEbR − b. If Right plays in −b, we get

• aEbR+(−b)R. Reall that sine b is taken in its anonial form, there

is only one Right option to −b, namely (−b)R0
. Here Left an answer

to a+ (−b)R0
whih is positive sine (−b)R0 > −b > −a. Therefore it

is a winning position for Left.



Chapter 3. Partizan games 67

Consider now Right's possible moves in aEbR
. Toppling rightward, Right

an move to:

• aR − b, whih is positive.

• a− b, whih is positive.

• aE(bR)R−b. Then Left an answer to a−b whih is positive and win.

Toppling leftward, Right an move to:

• aREbR − b. Then Left an answer to aR − b, whih is positive.

• bR − b whih is positive.

• (bR)R − b, again positive.

�

We an now state the following laim.

Claim 3.38 Let a, b be numbers suh that a > b. We have aEb = {a|b}.

Proof. To prove that aEb = {a|b}, we prove that the seond player has a

winning strategy in aEb−{a|b}. Without loss of generality, we may assume

Right starts the game, and onsider his possible moves from aEb−{a|b}. If
Right plays in −{a|b}, we get

• aEb− a. Then Left an answer to a− a = 0.

Consider now Right's possible moves in aEb. Toppling leftward, Right an

move to:

• aREb− {a|b}. Then Left an answer to aR − {a|b}, whih is positive

by Corollary 3.34.

• b− {a|b}. Then Left an answer to b− b, whih has value 0.
• bR − {a|b}. Then Left an answer to bR − b, whih is positive.

Toppling rightward, Right an move to:

• aR − {a|b}. Then Left an answer to aR − b, whih is positive.

• a− {a|b}. Then Left an answer to a− b, having value at least 0.
• aEbR − {a|b}. Then if a > b Left an answer to aEbR − b, whih is

positive by Lemma 3.37. Otherwise, a = b and Left an answer to

bR − {a|b}, whih is positive by Corollary 3.34.

�

As an example, here is a representation of {1
2 | −

5
4}:

We now start proving these two rows of dominoes (and their reversals) are

the only rows having the value {a|b}. The next four lemmas are preliminary

lemmas, proving some options may not our for a player in a game having

value {a|b}.
First we prove that some of Left's moves from aLRb annot be available

for Right in a game having value {a|b}.
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Lemma 3.39 Let a, b be numbers suh that a > b. For any Left option bL

obtained from b toppling rightward, we have aLRbL < {a|b}.

Proof. We prove that Right has a winning strategy in aLRbL − {a|b}
whoever plays �rst. When Right starts, he an move to bL −{a|b}, whih is

negative by Corollary 3.34. Now onsider the ase when Left starts and her

possible moves to aLRbL − {a|b}. If Left plays in −{a|b}, we get

• aLRbL − b. Then Right an answer to bL − b, whih is negative.

Consider now Left's possible moves in aLRbL
. Toppling rightward, Left an

move to:

• aL − {a|b}. Then Right an answer to aL − a, whih is negative.

• a− {a|b}. Then Right an answer to a− a whih has value 0.
• aLR(bL)L − {a|b}. Then Right an answer to aLR(bL)L − a, whih

is negative by Lemma 3.35 sine both moves in b were by toppling

rightward, allowing us to onsider aLR(bL)L as some aLRbL
.

Toppling leftward, Left an move to:

• aLLRbL−{a|b}. Then Right an answer to bL−{a|b} whih is negative
by Corollary 3.34.

• RbL − {a|b} whih is negative as RbL < bL
by Lemma 3.33 and

bL − {a|b} is negative by Corollary 3.34.

• (bL)L − {a|b} whih is negative by Corollary 3.34.

�

Now we prove that some of Right's moves from aLRb annot be available

for Left in a game having value {a|b}. Note that these moves are not the

reversal of moves onsidered in the previous lemma.

Lemma 3.40 Let a, b be numbers suh that a > b. For any Right option bR

obtained from b toppling rightward, we have aLRbR > {a|b}.

Proof. We prove that Left has a winning strategy in aLRbR−{a|b} whoever
plays �rst. When Left starts, she an move to aLRbR − b, whih is positive

by Lemma 3.35. Now onsider the ase where Right starts, and his possible

moves from aLRbR − {a|b}. If Right plays in {a|b}, we get

• aLRbR − a. Then Left an answer to a− a whih has value 0.

Consider now Right's possible moves in aLRbR
. Toppling rightward, Right

an move to:

• aR − {a|b}. Then Left an answer to aR − b, whih is positive.

• aL− {a|b}, whih is positive by Corollary 3.34.

• aLR(bR)R − {a|b}. Then Left an answer to aLR(bR)R − b, whih
is positive by Lemma 3.35 sine both moves in b were by toppling

rightward, allowing us to onsider aLR(bR)R as some aLRbR
.

Toppling leftward, Right an move to:
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• aRLRbR−{a|b}. Then Left an answer to aR−{a|b}, whih is positive

by Corollary 3.34.

• bR − {a|b}. Then Left an answer to bR − b, whih is positive.

• (bR)R − {a|b}. Then Left an answer to (bR)R − b, whih is positive.

�

Similarly, we prove that some of Left's moves from aEb annot be avail-

able for Right in a game having value {a|b}.

Lemma 3.41 Let a, b be numbers suh that a > b. For any Left option bL

obtained from b toppling rightward, we have aEbL < {a|b}.

Proof. We prove that Right has a winning strategy in aEbL−{a|b} whoever
plays �rst. When Right starts, he an move to bL−{a|b}, whih is negative

by Corollary 3.34. Now onsider the ase when Left starts, and her possible

moves from aEbL − {a|b}. If Left plays in −{a|b}, we get

• aEbL − b. Then Right an answer to bL − b, whih is negative.

Consider now Right's possible moves in aEbL
. Toppling rightward, Left an

move to:

• aL − {a|b}. Then Right an answer to aL − a, whih is negative.

• a− {a|b}. Then Right an answer to a− a whih has value 0.
• aE(bL)L − {a|b}. Then Right an answer to aE(bL)L − b, whih is

negative by Corollary 3.34 sine both moves in b were by toppling

rightward, allowing us to onsider aE(bL)L as some aEbL
.

Toppling leftward, Left an move to:

• aLEbL−{a|b}. Then Right an answer to bL−{a|b}, whih is negative

by Corollary 3.34.

• bL − {a|b}, negative by Corollary 3.34.

• (bL)L − {a|b}, negative by Corollary 3.34.

�

Finally we prove that some of Right's moves from aEb annot be available

for Left in a game having value {a|b}. Note that again these moves are not

the reversal of moves onsidered in the previous lemma.

Lemma 3.42 Let a, b be numbers suh that a > b. For any Right option bR

obtained from b toppling rightward, we have aEbR > {a|b}.

Proof. We prove that Left has a winning strategy in aEbR−{a|b} whoever

plays �rst. When Left starts, she an move to aEbR−b, whih is positive by

Lemma 3.37 if a > b and to bR − {a|b}, whih is positive by Corollary 3.34

if a = b. Now onsider the ase when Right starts, and his possible moves

from aEbR − {a|b}. If Right plays in −{a|b}, we get

• aEbR − a. Then Left an answer to a− a whih has value 0.
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Consider now Right's possible moves in aEbR
. Toppling rightward, Right

an move to:

• aR − {a|b}. Then Left an answer to aR − b, whih is positive.

• a− {a|b}. Then Left an answer to a− a whih has value 0.
• aE(bR)R−{a|b}. Then Left an answer to aE(bR)R−b, whih is posi-

tive by Lemma 3.37 sine both moves in b were by toppling rightward,

allowing us to onsider aE(bR)R as some aEbR
.

Toppling leftward, Right an move to:

• aREbR−{a|b}. Then Left an answer to aR−{a|b}, whih is positive

by Corollary 3.34.

• bR − {a|b}. Then Left an answer to bR − b, whih is positive.

• (bR)R − {a|b}. Then Left an answer to (bR)R − b, whih is positive.

�

Though we want to deal with a game having value {a|b}, it might not

be in anonial form, that is its options and other proper followers might

not be numbers. As most known results in Toppling Dominoes are about

numbers, we get bak there with the following lemma.

Lemma 3.43 Let a be a number and x be a game suh that x > a. Then

there exists a number b > a suh that b ∈ xL
∗

.

Proof. We prove it by indution on the birthdays of x and a.
If x = a, then a ∈ xL

∗

and a > a. Otherwise, x > a, so aR0 6 x or

a 6 xL for some xL. In both ases, we onlude by indution hypothesis,

sine aR0 > a and (xL)L
∗

⊆ xL
∗

. �

To fully haraterise Toppling Dominoes rows having value {a|b}, we
need another lemma from [17℄:

Lemma 3.44 (Fink et al. [17℄) [Sandwih Lemma℄ Let G be a Top-

pling Dominoes position with value α. From G − α, if the �rst player

topples dominoes toward the left (right) then the winning response is not to

topple a domino toward the left (right).

We now assume some Toppling Dominoes position x has value {a|b}
to fore some properties on suh positions.

Lemma 3.45 If a > b are numbers and x is a Toppling dominoes posi-

tion with value {a|b}, then

• a ∈ xL ∪ xL
2

,

• for any number a0 > a, a0 /∈ xL
∗

,

• b ∈ xR ∪ xR
2

,

• for any number b0 < b, b0 /∈ xR
∗

.
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Proof. As x = {a|b}, x − {a|b} is a seond-player win. From x − {a|b},
Right an move to x − a, from whih Left should have a winning move. It

annot be to x+ (−a)L0 = {a|b} − aR0
as it is not winning sine aR0

an be

written {r1|r2} with r1 > a and r2 > b. Hene there is a Left move x0 of x
suh that x0 > a. By Lemma 3.43, there exists a number a0 > a suh that

a0 ∈ xL
∗

0 ⊂ xL
+

. If a0 ∈ xL
, then a0 = a as otherwise Left's move from

x− {a|b} to a0 − {a|b} would be winning. As xL
>3

⊂ xL
2

, we do not need

onsider that ase. Thus we an assume a0 ∈ xL
2

\xL
. We an then write

x = w1δ1a0δ2w2 with δ1, δ2 ∈ {L,E}. In the following, we use the fat that

Left has no winning �rst move in x−{a|b}. From x−{a|b}, Left an topple

δ2 rightward to w1δ1a0. If Right answers to w1δ1a0 − a, Left an topple

δ1 leftward to a0 − a and win. Hene Right's winning answer has to be to

some (w1δ1a0)
R − {a|b} and an only be ahieved by toppling leftward by

Lemma 3.44. If he moves to a0 or some aR0 , Left's move to a0 − b or aR0 − b
is a winning move sine aR0 > a0 > a > b. Hene his winning move is to

some wR
1 δ1a0 − {a|b}. But then Left an answer to a0 − {a|b} and we have

a0 = a or Right would have no winning strategy. This implies both that

a ∈ xL ∪ xL
2

, and that for any number a0 > a, a0 /∈ xL
∗

.

A similar reasoning would prove the last two stated items. �

Lemma 3.46 If a > b are numbers and x is a Toppling dominoes po-

sition with value {a|b}, then x has a Left option to a or a Right option to

b.

Proof. By Lemma 3.45, we know that a ∈ xL ∪ xL
2

and b ∈ xR ∪ xR
2

.

Assume that a only appears in xL
2

\xL
and b only appears in xR

2

\xR
.

We an write x = w1δ1aδ2w2 suh that b /∈ wR
+

1 and δ1, δ2 ∈ {L,E}, or

x = w1δ1bδ2w2 suh that a /∈ wL
+

1 and δ1, δ2 ∈ {R,E}. Consider the one

with w1 having the smallest length. Without loss of generality, we an

assume it is w1δ1aδ2w2, and onsider Left's move from x − {a|b} to

w1δ1a− {a|b}. We saw in the proof of Lemma 3.45 that Right's win-

ning answer an only be to some wR
1 δ1a− {a|b}. Now Left an move to

wR
1 δ1a− b. If Right answers to wR

1 δ1a− bL0
, Left an move to a− bL0

and

win. Hene Right's winning answer has to be to some (wR
1 δ1a)

R − b. For

this move to be winning, we have (wR
1 δ1a)

R 6 b, so by Lemma 3.43 we have

b0 ∈ ((wR
1 δ1a)

R)R
∗

for some number b0 6 b. If b0 < b, by Lemma 3.45 we

have b0 /∈ xR
∗

, so b0 has to be obtained from wR
1 δ1a by only toppling left-

ward. We have b0 < b 6 a, hene b0 annot be some aR > a, nor some

(wR
1 )

Rδ1a sine it would mean that a ∈ bL
0 and then a < b0. Hene b0 = b.

Again, b has to be obtained from wR
1 δ1a by only toppling leftward sine

b /∈ aR
+

as b 6 a, and no b starts in x before w1 ends. In partiular,

(wR
1 δ1a)

R
is of the form wR

1 δ1a, a or aR. (wR
1 δ1a)

R
annot be of the form

aR, sine aR > a > b. If (wR
1 δ1a)

R
is of the form wR

1 δ1a, Left an move from

wR
1 δ1a− b to a− b and win. Hene (wR

1 δ1a)
R = a, sine (wR

1 δ1a)
R 6 b 6 a,
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we have a = b and δ1 = E. w1 annot be greater than or equal to a sine

otherwise we would �nd a number a0 > a suh that a0 ∈ wL
∗

1 . Similarly,

w1 annot be less than or equal to b = a. As aL < a < aR, there exists a

Left move wL
1 of w1 that is greater than or equal to a and so we an �nd

a number a0 > a suh that a0 ∈ (wL
1 )

L
∗

, whih again is not possible. This

means there was no winning move for Right from wR
1 δ1a− b, whih means

there was no winning move for Right from w1δ1a− {a|b}, whih ontradits

the fat that x = {a|b}. Hene we have that a ∈ xL
or b ∈ xR

. �

We an now prove the following laim.

Claim 3.47 If a > b are numbers and x is a Toppling dominoes position

with value {a|b}, then x is either aLRb or aEb (or the reversal of one of

them).

Proof. By Lemma 3.46, we an assume without loss of generality that

x = aLx′
or x = aEx′

for some x′
.

First assume x = aLx′
. If x is a strit subword of aLRb, then x is an option

of aLRb, so they annot be equal. For the same reason, aLRb annot be

a strit subword of x. Looking from left to right, we �nd the �rst domino

where x di�ers from aLRb. If it is a white or grey domino instead of a

blak one, then Right has a move from x−{a|b} to aLRbL −{a|b} whih is

winning by Lemma 3.39. If it is a blak or grey domino instead of a white

one, then Left has a move from x−{a|b} to aL−{a|b} or to aLRbR−{a|b}
whih are winning by Corollary 3.34 and Lemma 3.40. So x annot di�er

from aLRb.
Now assume x = aEx′

. If x is a strit subword of aEb, then x is an option of

aEb, so they annot be equal. For the same reason, aEb annot be a strit

subword of x. Looking from left to right, we �nd the �rst domino where

x di�ers from aEb. If it is a white or grey domino instead of a blak one,

then Right has a move from x− {a|b} to aEbL − {a|b} whih is winning by

Lemma 3.41. If it is a blak or grey domino instead of a white one, then Left

has a move from x−{a|b} to aEbR−{a|b} whih is winning by Lemma 3.42.

So x annot di�er from aEb.

�

3.3 Col

Col is a partizan game played on an undireted graph with verties either

unoloured or oloured blak or white. A move of Left onsists in hoosing

an unoloured vertex and olouring it blak, while a move of Right would be

to do the same with the olour white. An extra ondition is that the partial

olouring has to stay proper, that is no two adjaent verties should have

the same olour.
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Unoloured verties are represented grey.

When a player hooses a vertex, they thus beome unable to play on any

of its neighbours for the rest of the game. Hene, all these neighbours are

somehow reserved for the other player. Another way of seeing the game is

to play it on the graph of available moves: a position is an undireted graph

with all verties oloured blak, white or grey; a move of Left is to hoose

a blak or grey vertex, remove it from the game with all its blak oloured

neighbours, and hange the olour of its other neighbours to white; a move

of Right is to hoose a white or grey vertex, remove it from the game with all

its white oloured neighbours, and hange the olour of its other neighbours

to blak. This means that blak verties are reserved for Left, white verties

for Right, and either player an hoose grey verties. In the following, we

use that seond representation.

The desription of a position onsists of the graph on whih the two

players are playing, and a reservation funtion from the set of verties to the

set of olours {black,white, grey}.

Example 3.48 Figure 3.11 shows an example of a Col position under the

two representations. On top is the �rst representation as in the original

de�nition of the game. On bottom is the seond representation, that we use

in the following. Both represent the same game. To go from the original

representation to the seond representation, we delete blak verties and

olour their neighbours white, delete verties that were originally white and

olour their neighbours blak, and delete verties we gave both olours. We

an see the seond representation seems simpler, and that is why we use it.

Example 3.49 Figure 3.12 gives an example of a Right move. Right hooses

the grey vertex x. That vertex is removed from the game. The white vertex

y also disappears. The grey vertex z beomes blak. The blak vertex t

stays blak. The rest of the graph does not hange as no other verties are

neighbours of x.

We represent some graphs using words: eah letter used in this repre-

sentation orresponds to a subgraph with a spei� vertex being inident

with the edges onneting that subgraph to the subgraphs orresponding to

the letters before and after this one. The spei� verties orresponding to

the �rst letter and the last letter are not neighbours, unless the words has

length 2. An o represents a grey vertex, a B a blak vertex and a W a white

vertex, the only vertex being the spei� vertex. An x represents a path

with two grey verties, anyone of them being the spei� vertex. All the

graphs that an be represented by words using these letters are aterpillars

with maximum degree 3. We also note Cn the yle on n grey verties.

Example 3.50 Figure 3.13 shows a word and the unique graph that it en-

odes. You an see that for eah x, there is a vertex whose degree remains

1.
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Figure 3.11: A Col position in its two representations
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y

x

z t

Figure 3.12: Playing a move in Col

xWooxxxoWoBxoWxooxWBoxBoxxo

Figure 3.13: Representation of a aterpillar by a word

We now introdue a few notation that we use in the following. We note

ℓG(v) the label of a vertex v ∈ V (G), that is B if the vertex is oloured

blak, W if it is oloured white and o if it is unoloured. Modifying the label

of a vertex is equivalent to modifying its olour. We say ℓG(u) = −ℓG(v)
if both ℓG(u) and ℓG(v) are o or if one is B and the other is W . Given a

Col position G, we note −G the Col position suh that V (−G) = V (G),
E(−G) = E(G) and ∀v ∈ G, ℓ−G(v) = −ℓG(v). The reader would have

reognised that the game −G is the onjugate of the game G. Given two

Col positions G1, G2 and two verties u1 ∈ V (G1), u2 ∈ V (G2) suh that

ℓG1
(u1) = ℓG2

(u2), we note (G1, u1)⊙ (G2, u2) the Col position de�ned by:

V ((G1, u1)⊙ (G2, u2)) = V (G1) ∪ V (G2) \ {u2}
E((G1, u1)⊙ (G2, u2)) = E(G1) ∪ E(G2[V (G2) \ {u2}])

∪{(u1, v) | (u2, v) ∈ E(G2)})

ℓ(G1,u1)⊙(G2,u2)(v) =

{
ℓG1

(v) if v ∈ V (G1)
ℓG2

(v) otherwise

Given a vertex u in a Col position G, we note by G+
u (resp. G−

u ) the Col

position obtained from G by re-labelling B (resp. W ) the vertex u.
We note PB

n (resp PBB
n , PBW

n , PWB
n , PWW

n ) the Col position (Bon, u) (resp
(BonB,u), (BonW,u), (WonB,u), (WonW,u)) where the spei� vertex u
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is suh that ℓPB
n
(u) = B (resp ℓPBB

n
(u) = B, ℓPBW

n
(u) = B, ℓPWB

n
(u) = W ,

ℓPWW
n

(u) = W ).

In this setion, we reall some results stated in [4℄ and [10℄ and give their

proofs, �nd the normal outome of most aterpillars with no reserved vertex

and the normal outome of any ograph with no reserved vertex. We present

some results that are already stated in [4℄ and [10℄ beause most of them are

stated without proof, and though we trust the authors of these books, we

think it is interesting to have the proof written somewhere.

3.3.1 General results

First, we look at general graphs and give some tools that help the analysis.

The �rst theorem gives a winning strategy in spei� situations: when

a position is symmetri, with no vertex being its own image, the seond

player wins by always playing on the image of the vertex their opponent just

played. This is lose to the `Tweedledum-Tweedledee' strategy, exept that

the position is not neessarily of the form G+ (−G).

Theorem 3.51 (Berlekamp et al. [4℄, Conway [10℄) Let G be a Col

position suh that there exists a �x-point-free involution f of V (G) suh

that:

1. ∀u, v ∈ V (G), (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(G)

2. ∀v ∈ V (G), lG(v) = −lG(f(v))

Then G ≡+ 0.

Proof. We show it by indution on |V (G)|.
If |V (G)| = 0, G = ∅ = {· | ·} = 0.
Assume now |V (G)| > 2. Let GL

be the graph after a move of

Left on any vertex u from G. Let G′
be the graph after a move of

Right on the vertex f(u) from GL
whih is possible sine u 6= f(u)

and lG(u) = −lG(f(u)). f|G′
is a �x-point-free involution of V (G′)

suh that ∀v,w ∈ V (G′), (v,w) ∈ E(G′) ⇔ (f|G′(v), f|G′(w)) ∈ E(G′) and

∀v ∈ V (G′), lG′(v) = lG′(f|V (G′)(v)), so G′ ≡+ 0 by indution and is a se-

ond player win. Hene Right has a winning strategy playing seond.

A similar reasoning would show Left has a winning strategy playing seond.

Hene G ≡+ 0. �

Example 3.52 Figure 3.14 shows an example of a Col position satisfying

the onditions of Theorem 3.51. The image of eah vertex is the re�etive

vertex through the dashed line.

The next theorem allows us to ompare a position to the same position

in whih we would have removed some edges, all of them inident to a blak

vertex. This omparison seems natural as it seems to be an advantage when

a vertex reserved for you has a low degree.
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Figure 3.14: A symmetri Col P-position

Theorem 3.53 (Berlekamp et al. [4℄, Conway [10℄) Let G and G′
be

two Col positions suh that:

1. V (G) = V (G′),

2. ∀u ∈ V (G), lG(u) = lG′(u),

3. E(G′) ⊆ E(G),

4. ∀(u, v) ∈ E(G) \E(G′), (lG(u) = B or lG(v) = B).

Then G 6+ G′
.

Proof. We show by indution on |V (G)| that G′ + (−G) >+ 0, that is Left
wins if Right starts.

If |V (G)| = 0, G′ + (−G) = ∅+ ∅ = 0 + 0 = 0.
Assume now |V (G)| > 2. Let f be the funtion whih assigns a vertex of

V (G′) to its opy in V (−G) and vie versa. Let GR
be the graph after a

move of Right on any vertex u from G′ + (−G). Let G0 be the graph af-

ter a move of Left on the vertex f(u) from GR
. Let G1 be the subgraph

of G0 having its verties orresponding to those of −G and G2 the sub-

graph of G0 having its verties orresponding to those of G′
. We have

V (−G1) = V (G2), ∀u ∈ V (−G1), l−G1
(u) = lG2

(u), E(G2) ⊆ E(−G1) and

∀(u, v) ∈ E(G1) \ E(G2), (l−G1
(u) = B or l−G1

(v) = B), so G2 +G1 >
+ 0

by indution. So G0 >+ 0 and Left wins G0 if Right starts, so she wins

GR
if she starts. So G′ + (−G) >+ 0. Hene G 6+ G′

. �

As we get a similar result if the removed edges are all inident to a white

vertex, we get the following orollary.

Corollary 3.54 (Berlekamp et al. [4℄, Conway [10℄) Let G and G′
be

two Col positions suh that:
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1. V (G) = V (G′)

2. ∀u ∈ V (G), lG(u) = lG′(u)

3. E(G′) ⊆ E(G)

4. ∀(u, v) ∈ E(G) \ E(G′), ((lG(u) = B and lG(v) = W )) or vie versa

Then G ≡+ G′
.

Proof. We have G 6+ G′
and −G 6+ −G′

, so G ≡+ G′
. �

Atually, we even have G = G′
in this ase.

Adding a blak vertex or reserving a vertex for Left seems to be an

advantage for her. The next theorem shows that this intuition is orret.

Theorem 3.55 (Berlekamp et al. [4℄, Conway [10℄) Let G be a Col

position and u a grey vertex of G. Then:

1. G+
u >+ G >+ G−

u

2. G+
u >+ G \ {u} >+ G−

u

Proof. We show by indution on |V (G)| that G+
u + (−G \ {u}) >+ 0, that

is Left wins if Right starts.

If |V (G)| = 0, G+
u + (−G \ {u}) = ∅+ ∅ = 0.

Assume now |V (G)| > 2. We de�ne f the funtion whih assigns a vertex

of V (G+
u ) \ {u} to its opy in V (−G \ {u}) and vie versa. Let GR

be the

graph after a move of Right on any vertex v from G+
u + (−G \ {u}). Let G0

be the graph after a move of Left on the vertex f(v) from GR
. Let G1 be

the subgraph of G0 having its verties orresponding to those of G+
u and G2

the subgraph of G0 having its verties orresponding to those of −G \ {u}.
If (u, f(v)) ∈ E(G+

u + (−G \ {u})), then G1 = −G2, so G0 = G1 +G2 = 0.
Otherwise, G1 = G+

1u and G2 = −G1 \ {u}, so G0 = G1 + G2 >+ 0 by

indution. Hene 0 6+ G0 and Left wins G0 if Right starts, so she wins GR

if she starts. So G+
u + (−G \ {u}) >+ 0. Hene G+

u >+ G \ {u}.
We show by indution on |V (G)| that G+

u +(−G) >+ 0, that is Left wins
it if Right starts.

If |V (G)| = 0, G+
u + (−G) = ∅+ ∅ = 0.

Assume |V (G)| > 2. We de�ne f the funtion whih assigns a vertex of

V (G+
u ) to its opy in V (−G) and vie versa. Let GR

be the graph after

a move of Right on any vertex v from G+
u + (−G). Let G0 be the graph

after a move of Left on the vertex f(v) from GR
. Let G1 be the subgraph

of G0 having its verties orresponding to those of G+
u and G2 the subgraph

of G0 having its verties orresponding to those of −G. If u = f(v) or

(u, v) ∈ E(G+
u + (−G \ {u})), then G1 = −G2, so G0 = G1 + G2 = 0. If

(u, f(v)) ∈ E(G+
u + (−G \ {u})), then G2 = G+

2u and G1 = G2 \ {u}, so
G0 = G1 + G2 >+ 0. Otherwise, G1 = (−G2)

+
u , so G0 = G1 +G2 >+ 0 by
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indution. Hene 0 6+ G0 and Left wins G0 if Right starts, so she wins GR

if she starts. So G+
u + (−G) >+ 0. Hene G+

u >+ G.
Finally, −(G−

u ) = (−G)+u , so −(G−
u ) >

+ −G and −(G−
u ) >

+ −G \ {u}.
Hene G >+ G−

u and G \ {u} >+ G−
u . �

The next theorem says that any Col position is equivalent under normal

play to a number or to the game ∗ added to a number, whih makes �nding

the outome of a sum easier. In partiular, it implies that the sum of two

Col N -positions is a P-position. Also, if we �nd a move to z for both

players, we know the value of the game is z + ∗ without having the need

to hek other options. It also implies that if G is a Col position where

G = −G, whih is the ase when all verties are grey, then G = 0 or G = ∗.
See [4℄, vol.1, p.47-48 for the proof.

Theorem 3.56 (Berlekamp et al. [4℄, Conway [10℄) For any Col po-

sition G, there exists a number z suh that G = z or G = z + ∗.

In a Col position, if there is a vertex for whih the position has the

same value when the olour of the vertex is swithed to blak and when the

olour of the vertex is swithed to white, it seems no player wants to play

on that vertex, whether it is reserved or not. The intuition is orret, and

the following theorem shows a result even stronger: even if you identify that

vertex to any vertex of another position, keeping the �rst position as it was,

with no other vertex adjaent to a vertex of the added position, no player

wants to play on that vertex, whether it is reserved or not.

Theorem 3.57 (Berlekamp et al. [4℄, Conway [10℄)

1. Let G be a Col position and u a grey vertex of G suh that G+
u ≡+ G−

u ,

G′
any Col position and v a grey vertex of G′

. Then

(G+
u , u)⊙ (G′+

v , v) ≡+ (G,u) ⊙ (G′, v) ≡+ (G \ {u}) + (G′ \ {v}) ≡+ (G−
u , u)⊙ (G′−

v , v).

2. Let G be a Col position and u a vertex of G suh that G+
u ≡+ G \ {u},

G′
any Col position and v a vertex of G′

sharing the olour of u. Then
(G+

u , u)⊙ (G′+
v , v) ≡+ (G \ {u}) + (G′ \ {v}).

Proof. 1. We have G+
u ≡+ G−

u , so 0 ≡+ G+
u + (−G−

u ) ≡+ G+
u + (−G)+u .

Moreover,

0 ≡+ G \ {u}+ (−G \ {u}) +G′ \ {v}+ (−G′ \ {v})
≡+ G \ {u}+G′ \ {v} + (−G) \ {u}+ (−G′) \ {v}
6

+ (G+
u , u)⊙ (G′+

v , v) + ((−G)+u , u)⊙ ((−G′)+v , v)
6

+ G+
u +G′ \ {v} + (−G)+u + (−G′) \ {v}

≡+ (G+
u + (−G)+u ) + (G′ \ {v}+ (−G′ \ {v}))

≡+ 0

Hene

0 ≡+ (G+
u , u)⊙ (G′+

v , v) + ((−G)+u , u)⊙ ((−G′)+v , v)
≡+ (G+

u , u)⊙ (G′+
v , v) + (−((G−

u , u)⊙ (G′−
v , v)))
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From Theorem 3.55, we get

(G+
u , u)⊙ (G′+

v , v) ≡+ (G,u) ⊙ (G′, v)
≡+ (G \ {u}) + (G′ \ {v}
≡+ (G−

u , u)⊙ (G′−
v , v)

2. We have G+
u ≡+ G \ {u}, so 0 ≡+ G+

u + (−G \ {u}).

0 ≡+ G \ {u} +G′ \ {u}+ (−G \ {u}) + (−G′ \ {u})
6+ (G+

u , u)⊙ (G′+
v , v) + (−((G \ {u}) + (G′ \ {v})))

6+ G+
u +G′ \ {v} + (−G \ {u}) + (−G′ \ {v})

≡+ 0

Hene

0 ≡+ (G+
u , u)⊙ (G′+

v , v) + (−((G \ {u}) + (G′ \ {v})))
(G+

u , u)⊙ (G′+
v , v) ≡+ (G \ {u}) + (G′ \ {v})

�

We immediately get the following orollary, that we use frequently in the

following of the setion.

Corollary 3.58 (Berlekamp et al. [4℄, Conway [10℄) For any Col po-

sition G, and any vertex v of G suh that ℓG(v) = B, we have

(G, v) ⊙ PBB
0 ≡+ (G \ {v}) +B.

Proof. We have B = {∅ | ·} = BB. �

3.3.2 Known results

We now fous on some lasses of trees. Though we want to �nd the outomes

of Col positions where all verties are grey, we need intermediate lemmas

where some verties are blak or white.

We �rst prove that yles and paths having only grey verties all have

value 0, apart from the isolated vertex whih has value ∗. We separate the

proof with two lemmas, overing all possible maximal onneted subpositions

that may appear throughout suh a game, as the disjuntive sum of numbers

and ∗ is easy to determine, before Theorem 3.61 ends the proof.

The �rst lemma gives the values of all paths where eah leaf is either

blak or white, and all internal nodes are grey.

Lemma 3.59 (Berlekamp et al. [4℄, Conway [10℄)

1. ∀n > 0, B ≡+ BonB ≡+ 1.
2. ∀n > 0, BonW ≡+ 0.
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Proof. We show the results simultaneously by indution on n.
B = {∅ | ·} = {0 | ·} ≡+ 1. BB = {∅ | ·} = {0 | ·} ≡+ 1.
BW = B +W ≡+ 0.
Let n > 1 be an integer.

BonB = {Won−1B,Won−2B,

n−3

2⋃

i=0

(BoiW +Won−i−3B)

| (B +Bon−2B),

n−3⋃

i=0

(BoiB +Bon−i−3B)}

≡+ {0, 0, (0 + 0) | 2, (1 + 1)} by induction
≡+ 1.

BonW = {Won−1W,Won−2W, (Bon−2W +W ),

n−3⋃

i=0

(BoiW +Won−i−3W )

| Bon−1B,Bon−2B, (B +Bon−2W ),
n−3⋃

i=0

(BoiB +Bon−i−3W )}

≡+ {−1,−1, (0 + (−1)), (0 + (−1)) | 1, 1, (1 + 0), (1 + 0)}
by induction

≡+ 0.

�

The following lemma gives the values of all paths where exatly one leaf

is either blak or white, and all other verties, inluding the other leaf, are

grey.

Lemma 3.60 (Berlekamp et al. [4℄, Conway [10℄) ∀n > 1, Bon ≡+ 1
2 .

Proof. We show the result by indution on n.
Bo = {W, ∅ | B} = {−1, 0 | 1} ≡+ 1

2 .

Boo = {Wo,W,BW | (B +B), BB} ≡+ {−1
2 ,−1, 0 | (1 + 1), 1} ≡+ 1

2 .

Let n > 3 be an integer.

Bon = {Won−1,Won−2,

n−4⋃

i=1

(BoiW +Won−i−3, (Bon−3W +W ), Bon−2W

| (B +Bon−2),
n−4⋃

i=0

(BoiB +Bon−i−3), (Bon−3B +B), Bon−2B}

≡+ {−
1

2
,−

1

2
, (0−

1

2
), (0 + (−1)), 0 | (1 +

1

2
), (1 +

1

2
), (1 + 1), 1}

by induction

≡+ 1

2
.

�
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We are now able to state the result giving the value of any grey path and

any yle, as mentioned above.

Theorem 3.61 (Berlekamp et al. [4℄, Conway [10℄)

1. ∀n > 2, on ≡+ 0, and o = ∗.
2. ∀n > 3, Cn ≡+ 0.

Proof. o = {∅ | ∅} = {0 | 0} = ∗. oo = {W | B} = {−1 | 1} ≡+ 0.
ooo = {Wo, (W +W ) | Bo, (B +B)} ≡+ {−1

2 ,−2 | 1
2 , 2} ≡+ 0.

oooo = {Woo, (W +Wo) | Boo, (B +Bo)} ≡+ {−1
2 ,−

3
2 | 1

2 ,
3
2} ≡+ 0.

Let n > 5 be an integer.

on = {Won−2, (W +Won−3),

n−3

2⋃

i=1

(oiW +Won−i−3)

| Bon−2, (B +Bon−3)

n−3

2⋃

i=

(oiB +Bon−i−3)}

≡+ {−
1

2
,−

3

2
,−1 |

1

2
,
3

2
, 1}

≡+ {0}.

Cn = {Won−3W | Bon−3B} ≡+ {−1 | 1} ≡+ 0. �

The next theorem gives a useful tool on how to shorten long paths leading

to a degree 1 vertex in a general position, while keeping the value unhanged.

We prove that result using the original de�nition of omparison and equiva-

lene between games, as de�ned in [10℄:

G >
+ H ⇔ ((∀GR ∈ GR, GR 
 H) ∧ (∀HL ∈ HL, G 
 HL)).

Theorem 3.62 (Berlekamp et al. [4℄, Conway [10℄)

1. ∀G, u ∈ V (G) suh that ℓG(u) = B, n > 1,
(G,u) ⊙ PB

n+2 ≡
+ (G,u) ⊙ PBB

n − 1
2 ≡+ (G,u) ⊙ PBW

n + 1
2 .

2. ∀G, u ∈ V (G) suh that ℓG(u) = B, n > 1,
(G,u) ⊙ PBB

n ≡+ (G,u)⊙ PBB
1 .

3. ∀G, u ∈ V (G) suh that ℓG(u) = B, n > 1,
(G,u) ⊙ PBW

n ≡+ (G,u) ⊙ PBW
1 .

4. ∀G, u ∈ V (G) suh that ℓG(u) = B, n > 3, (G,u) ⊙ PB
n ≡+ (G,u) ⊙ PB

3 .

Proof. For most of the proof, we list the set of options of both games.

Options on the same line are equal, as explained on the third olumn of that

line. Having Left options of two games equal is enough to onlude none of

these options is greater than or equal to any of these two games (that follows

from G >+ G for any game G).
We show 1. by indution on the birthday of G.

If G = ∅, then it follows immediately from Lemma 3.59 and 3.60. Assume
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G is a non-empty position. Let GL
3 be the position after a move of Left on

u from G, GL
2 the position after a move of Left on a neighbour of u from G,

GL
1 the position after a move of Left on any other vertex from G, and GR

the position after a move of Right on any vertex from G.
We get

Left options of

(G,u) ⊙ PBB
n

Left options of

(G,u) ⊙ PBW
n + 1

(GL
1 , u)⊙ PBB

n (GL
1 , u)⊙ PBW

n + 1 by indution

GL
2 + onB GL

2 + onW + 1 by Lemma 3.60

GL
3 +Won − 1B GL

3 +Won − 1W + 1 by Lemma 3.59

(G \ {u}) +Won−2B (G\{u})+Won−2W+1 by Lemma 3.59

((G,u) ⊙ PBW
i ) +

Won−i−3B
((G,u) ⊙ PBW

i ) +
Won−i−3W + 1

∀i ∈ J0;n − 3K by

Lemma 3.59

(G,u) ⊙ PBW
n−2 (G,u)⊙PBW

n−2 +W +1

(G,u) ⊙ PBW
n−1

(G,u) ⊙ PBW
n

We an see almost all of them are one-to-one equal. We assure no Left

option of (G,u)⊙PBB
n is greater than or equal to (G,u)⊙PBW

n +1 and no

Left option of (G,u)⊙PBW
n +1 is greater than or equal to (G,u)⊙PBB

n for

the others as follows:

(G,u) ⊙ PBW
n−1 6+ ((G \ {u}) +Bon−1W )

≡+ ((G \ {u}) +Won−1W + 1)

�+ (G,u) ⊙ PBW
n + 1

(G,u) ⊙ PBW
n 6

+ ((G \ {u}) +BonW )

≡+ ((G \ {u}) +Won−1B)

�+ (G,u) ⊙ PBB
n

We also get

Right options of

(G,u) ⊙ PBB
n

Right options of

(G,u) ⊙ PBW
n + 1

(GR, u)⊙ PBB
n (GR, u)⊙ PBW

n + 1 by indution

G+Bon−2B G+Bon−2W + 1 by Lemma 3.59

((G,u) ⊙ PBB
i ) +

Bon−i−3B
((G,u) ⊙ PBB

i ) +
Bon−i−3W + 1

∀i ∈ J0;n − 3K by

Lemma 3.59

((G,u) ⊙ PBB
n−2) +B ((G,u) ⊙ PBB

n−2) + 1

((G,u) ⊙ PBB
n−1) + 1

We an see almost all of them are one-to-one equal. We assure no Right

option of (G,u) ⊙ PBB
n is less than or equal to (G,u) ⊙ PBW

n + 1 and no

Right option of (G,u) ⊙ PBW
n + 1 is less than or equal to (G,u) ⊙ PBB

n for
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the other as follows:

((G,u) ⊙ PBB
n−1) + 1 >+ ((G \ {u}) + on−1B + 1)

>+ ((G \ {u}) +BonB)

>+ (G,u) ⊙ PBB
n

Hene we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PBW

n + 1.

We get

Left options of

(G,u) ⊙ PBB
n − 1

2

Left options of

(G,u) ⊙ PB
n+2

(GL
1 , u)⊙ PBB

n − 1
2 (GL

1 , u)⊙ PB
n+2 by indution

GL
2 + onB − 1

2 GL
2 + on+2

by Lemma 3.60

GL
3 +Won − 1B − 1

2 GL
3 +Won+1

by Lemma 3.60

(G\{u})+Won−2B− 1
2 (G \ {u}) +Won

by Lemma 3.59 and

3.60

((G,u) ⊙ PBW
i ) +

Won−i−3B − 1
2

((G,u) ⊙ PBW
i ) +

Won−i−1
∀i ∈ J0;n − 3K by

Lemma 3.59 and 3.60

(G,u) ⊙ PBW
n−2 − 1

2 (G,u) ⊙ PBW
n−2 +Wo by Lemma 3.60

(G,u) ⊙ PBW
n−1 +W

(G,u) ⊙ PBW
n−1 − 1

2

(G,u) ⊙ PBB
n − 1 (G,u) ⊙ PBW

n

We an see almost all of them are one-to-one equal. We assure no Left

option of (G,u) ⊙ PBB
n − 1

2 ) is greater than or equal to (G,u) ⊙ PB
n+2 and

no Left option of (G,u)⊙PB
n+2 is greater than or equal to (G,u)⊙PBB

n − 1
2

for the others as follows:

(G,u) ⊙ PBW
n−1 +W <+ (G,u) ⊙ PBW

n−1 −
1

2

�+ (G,u) ⊙ PBB
n −

1

2

(G,u) ⊙ PBW
n−1 −

1

2
6+ (G \ {u}) +Bon−1W −

1

2
≡+ (G \ {u}) +Won

�+ (G,u) ⊙ PB
n+2

We also get



Chapter 3. Partizan games 85

Right options of

(G,u) ⊙ PBB
n − 1

2

Right options of

(G,u) ⊙ PB
n+2

(GR, u)⊙ PBB
n − 1

2 (GR, u)⊙ PB
n+2 by indution

G+Bon−2B − 1
2 G+Bon

by Lemma 3.59 and

3.60

((G,u) ⊙ PBB
i ) +

Bon−i−3B − 1
2

((G,u) ⊙ PBB
i ) +

Bon−i−1
∀i ∈ J0;n − 3K by

Lemma 3.59 and 3.60

((G,u)⊙PBB
n−2)+B− 1

2 ((G,u) ⊙ PBB
n−2) +Bo

by Lemma 3.59 and

3.60

((G,u) ⊙ PBB
n−1) +B

(G,u) ⊙ PBB
n + 0 (G,u) ⊙ PBB

n

We an see almost all of them are one-to-one equal. We assure no Right

option of (G,u) ⊙ PBB
n − 1

2 is less than or equal to (G,u) ⊙ PB
n+2 and no

Right option of (G,u) ⊙ PB
n+2 is less than or equal to (G,u) ⊙ PBB

n − 1
2 for

the other as follows:

((G,u) ⊙ PBB
n−1) +B >

+ (G \ {u}) + on−1B +B

>+ (G \ {u}) +BonB −
1

2

>
+ (G,u)⊙ PBB

n −
1

2

Hene we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PB

n+2.

We show 2. by indution on the birthday of G and on n.
If G = ∅, then it follows immediately from Lemma 3.59. If n = 1, there is

nothing to show.

Assume G is a non-empty graph and n > 2. Let GL
3 be the graph after a

move of Left on u from G, GL
2 the graph after a move of Left on a neighbour

of u from G, GL
1 the graph after a move of Left on any other vertex from G,

and GR
the graph after a move of Right on any vertex from G.

We get

Left options of

(G,u) ⊙ PBB
n

Left options of

(G,u) ⊙ PB
1

(GL
1 , u)⊙ PBB

n (GL
1 , u)⊙ PBB

1 by indution

GL
2 + onB GL

2 + oB by Lemma 3.60

GL
3 +Won − 1B GL

3 +WB by Lemma 3.59

(G \ {u}) +Won−2B (G \ {u}) by Lemma 3.60

((G,u) ⊙ PBW
0 ) +

Won−3B
((G,u) ⊙ PBW

0 ) by Lemma 3.59

((G,u) ⊙ PBW
i ) +

Won−i−3B
∀i ∈ J0;n− 3K

(G,u) ⊙ PBW
n−2

(G,u) ⊙ PBW
n−1
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We an see almost all of them are one-to-one equal. We assure no Left

option of (G,u) ⊙ PBB
n is greater than or equal to (G,u) ⊙ PB

1 and no Left

option of (G,u)⊙PB
1 is greater than or equal to (G,u)⊙PBB

n for the others

as follows:

((G,u) ⊙ PBW
i ) +Won−i−3B 6

+ (G \ {u}) +BoiW +Won−i−3B
≡+ G \ {u}
�+ (G,u)⊙ PB

1

(G,u) ⊙ PBW
n−2 6+ (G \ {u}) +Bon−2W

≡+ G \ {u}

�+ (G,u)⊙ PB
1

(G,u) ⊙ PBW
n−1 6

+ (G \ {u}) +Bon−1W
≡+ G \ {u}
�+ (G,u)⊙ PB

1

We also get

Right options of

(G,u) ⊙ PBB
n

Right options of

(G,u) ⊙ PBB
1

(GR, u)⊙ PBB
n (GR, u)⊙ PBB

1 by indution

G+Bon−2B G+B by Lemma 3.59

((G,u) ⊙ PBB
0 ) +

Bon−3B

((G,u) ⊙ PBB
i ) +

Bon−i−3B
∀i ∈ J1;n − 3K

((G,u) ⊙ PBB
n−2) +B

We an see almost all of them are one-to-one equal. We assure no Right

option of (G,u)⊙PBB
n is greater than or equal to (G,u)⊙PB

1 and no Right

option of (G,u)⊙PB
1 is greater than or equal to (G,u)⊙PBB

n for the others

as follows:

((G,u) ⊙ PBB
0 ) +Bon−3B ≡+ ((G \ {u}) +B +B)

>
+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

((G,u) ⊙ PBB
i ) +Bon−i−3B ≡+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

((G,u) ⊙ PBB
n−2) +B ≡+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

Hene we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PBB

1 .

3. and 4. follow from 1. and 2.

�
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We now get bak to smaller sets of positions, leading to an algorithm to

�nd the outome of any grey tree with at most one vertex having degree at

least 3, that is Theorem 3.77.

We start with two simple positions for whih we give the value.

Lemma 3.63 (Berlekamp et al. [4℄, Conway [10℄)

1. oBo ≡+ 0.
2. ooBoo ≡+ 0.

Proof. oBo = {o, (W +W ) | Bo} = {∗,−1 + (−1)12} ≡+ 0.

ooBoo = {WBoo, (W + oo), (oW +Wo) | BBoo, (B +Boo)}

≡+ {−
1

2
,−1 + 0,−

1

2
−

1

2
| 1, 1 +

1

2
}

≡+ 0

�

These two positions are now andidates for applying Theorem 3.57: on-

sidering the middle vertex as u, we now have ooo+u = 0 = −ooo+u = ooo−u
and ooooo+u = 0 = −ooooo+u = ooooo−u .

A similar result on arbitrarily long path would help too, and that is

Lemma 3.66. To get there, we �nd the values of any maximal onneted

subpositions of positions we an reah from the original positions, whih are

given in the two following lemmas, following the same pattern as for Lemmas

3.59, 3.60 and Theorem 3.61.

First, we see the values of paths whose leaves are reserved, having exatly

one extra reserved vertex. If that extra reserved vertex was adjaent to a leaf

reserved for the same player, we ould use Corollary 3.58 and then onlude

with Lemma 3.60, to get a value whih is atually di�erent from the general

pattern. Hene, we only onsider the other ases.

Lemma 3.64

1. ∀n > 1,m > 1, BonBomB ≡+ 1.
2. ∀n > 0,m > 0, WonBomW ≡+ −1.
3. ∀n > 0,m > 1, WonBomB ≡+ 0.

Proof.

1.

BoBoB = {WBoB, oB, (BW +WB) | (B +BoB)}

≡+ {0,
1

2
, (0 + 0) | (1 + 1)}

≡+ 1
When n > 2 or m > 2, it follows from Theorem 3.62.

2.

WBW = (W +B +W ) = −1 + 1 + (−1) ≡+ −1.
WBoW = (W +BoW ) ≡+ −1 + 0 = −1.
WoBoW = {(W + oW ), (WW +WW ) | BBoW,BoW}

≡+ {−1−
1

2
,−1 + (−1) |

1

2
, 0}

≡+ −1
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When n > 2 or m > 2, it follows from Theorem 3.62.

3.

WBoB = (W +BoB) ≡+ −1 + 1 ≡+ 0.
WoBoB = {(W + oB), (WW +WB),Wo,WoBW

| BBoB,BoB, (WoB +B)}

≡+ {−1 +
1

2
,−1 + 0,−

1

2
,−1 |

3

2
, 1, 0 + 1}

≡+ 0
When n > 2 or m > 2, it follows from Theorem 3.62. �

We now see the values of paths where exatly one leaf is reserved, as

well as exatly one extra vertex. Again, if that extra reserved vertex was

adjaent to a leaf reserved for the same player, we ould use Corollary 3.58

and onlude with Lemma 3.60, to get a value whih is atually di�erent

from the general pattern. Hene, we again only onsider other ases.

Lemma 3.65

1. ∀n > 1,m > 3, BonBom = 1
2 .

2. ∀n > 0,m > 3, WonBom = −1
2 .

Proof. BonBom = (BonBoW +Bo) ≡+ 0 + 1
2 = 1

2 .

WonBom = (WonBoW +Bo) ≡+ −1 + 1
2 ≡+ −1

2 . �

Finally, we get the pattern on arbitrary long paths, where reserving ex-

atly one vertex for a player does not give them an advantage, provided there

are at least three verties on eah side of this vertex.

Lemma 3.66 (Berlekamp et al. [4℄, Conway [10℄)

∀n > 3,m > 3, onBom ≡+ 0.

Proof.

onBom ≡+ (onBoW+Bo) ≡+ (WoBoW+Bo+Bo) ≡+ −1+ 1
2+

1
2 ≡+ 0

by Theorem 3.62. �

We now �nd the outome of the set of positions we annot solve using

only Lemmas 3.63 and 3.66 before applying Theorem 3.57, that are stated

in Theorem 3.75: positions of the form onxoo with n at least 3. As before,
we analyse the values of all maximal onneted subpositions that players an

reah from the initial position, whih we are able to sum, but as there are

more kinds of these positions, we need more intermediate lemmas.

First, we look at positions where a player would have played on the non-

speial vertex of x, and a player, not neessarily the other player, would have

played on the farther leaf from the speial vertex of x.

Lemma 3.67

1. ∀n > 0, BonBoo ≡+ 1.
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2. ∀n > 1, WonBoo ≡+ 0.

Proof. BBoo ≡+ B + oo ≡+ 1.
BoBoo = {WBoo, oo, (B +Wo), (Bo+W ), BoBW

| (B +Boo), (BoB +B), BoBB}

≡+ {−
1

2
, 1 −

1

2
,
1

2
+ (−1), 0 | 1 +

1

2
, 1 + 1,

3

2
}

≡+ 1

WoBoo = {(W + oo), (WW +Wo), (Wo+W ),WoBW
| BBoo,Boo, (WoB +B),WoBB}

≡+ {−1 + 0,−1−
1

2
,−

1

2
+ (−1),−1 | 1,

1

2
, 0 + 1,

1

2
}

≡+ 0
When n > 2, it follows from Theorem 3.62. �

We now �nd the value of a game where a player would have played on

the non-speial vertex of x, using the result we just got from Lemma 3.67.

Lemma 3.68 ∀n > 3, onBoo ≡+ 1
2 .

Proof. onBoo ≡+ (WoBoo+Bo) ≡+ 0 + 1
2 = 1

2 by Theorem 3.62. �

We now onsider paths where exatly two verties are reserved, one being

a leaf and the other being the neighbour of the other leaf. If those two

verties were neighbours, we ould either use Corollary 3.58 and onlude

with Theorem 3.61 or use Corollary 3.54 and onlude with Lemma 3.60,

both giving values di�erent from the general pattern. Hene, again, we only

onsider other ases.

Lemma 3.69

1. ∀n > 1, BonBo ≡+ 3
4 .

2. ∀n > 1, WonBo ≡+ −1
4 .

Proof.

BoBo = {WBo, o, (BW +W ), Bo | (B +Bo), BoB}

≡+ {−
1

2
, ∗, 0 + (−1),

1

2
| 1 +

1

2
, 1}

≡+ 3

4
WoBo = {(W + o), (WW +W ),Wo | BBo,Bo,WoB}

≡+ {−1 + ∗,−1 + (−1),−
1

2
| 1∗,

1

2
, 0}

≡+ −
1

4
When n > 2, it follows from Theorem 3.62. �

We now use Lemma 3.69 to �nd the value of a path where exatly one

vertex is reserved, provided one of its neighbours is a leaf and there are at

least two verties in the other diretion, the ases where there is one or none

having been solved earlier and yielding di�erent values.
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Lemma 3.70 ∀n > 2, oBon ≡+ 1
4 .

Proof.

oBoo = {oo, (W +Wo), (o+W ), oBW | Boo, (oB +B), oBB}

≡+ {0,−1 −
1

2
, ∗+ (−1),−

1

2
|
1

2
,
1

2
+ 1, 1∗}

≡+ 1

4
Let n > 3 be an integer.

oBon ≡+ (oBoW +Bo) ≡+ −1
4 +

1
2 ≡+ 1

4 by Theorem 3.62. �

The next lemma gives the value of two small positions: BxB and BxW ,

as they do not follow the rule we state in Lemma 3.72.

Lemma 3.71

1. BxB ≡+ 3
2 .

2. BxW ≡+ ∗.

Proof.

BxB = {oWB,W,BWB | (B +B +B), BBB}

≡+ {−1,
1

2
, 1 | 2, 3}

≡+ 3

2

BxW = {oWW, (W +W ), BWW | oBB, (B +B), BBW}
≡+ {−2,−1∗, 0 | 0, 1∗, 2}
≡+ ∗

�

We an use these results to �nd the value of the game after the players

have played from onxoo on the two leaves not in the x, where n is at least 3.

Lemma 3.72

1. ∀n > 1, BonxB ≡+ 5
4 .

2. ∀n > 1, BonxW ≡+ −1
4 .

Proof. We show the results simultaneously by indution on n.
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BonxB = {Won−1xB,Won−2xB,

n−3⋃

i=0

(BoiW +Won−i−3xB),

(Bon−2W + oWB), (Bon−1W +W ), BonWB,BonWo

| (B +Bon−2xB),

n−i−3⋃

i=0

(BoiB +Bon−i−3xB),

(Bon−2B + oBB), (Bon−1B +B +B), BonBB}

≡+ {−1, ∗,
1

4
,
1

2
, 1 |

3

2
, 2∗,

9

4
,
5

2
, 3} by induction

≡+ 5

4
.

BonxW = {Won−1xW,Won−2xW,
n−3⋃

i=0

(BoiW +Won−i−3xW ),

(Bon−2W + oWW ), (Bon−1W +W +W ), BonWW

| (B +Bon−2xW ),
n−i−3⋃

i=0

(BoiB +Bon−i−3xW ),

(Bon−2B + oBW ), (Bon−1B +B), BonBW,BonBo}

≡+ {−2,−
3

2
,−

5

4
,−1∗,−

1

2
| 0,

1

2
,
3

4
, 1∗, 2} by induction

≡+ −
1

4
.

�

Now we give the value of the game after they have only played on one of

these two leaves, starting with the one loser to the verties represented by

the x.

Lemma 3.73 ∀n > 2, onxB ≡+ 3
4 .

Proof.

onxB = {Won−2xB,

n−3⋃

i=0

(oiW +Won−i−3xB), (on−2W + oWB),

(on−1W +W ), onWB, onWo

| Bon−2xB,

n−3⋃

i=0

(oiB +Bon−i−3xB), (on−2B + oBB),

(on−1B +B +B), onBB}

≡+ {−
3

2
,−

3

4
,−

1

2
∗,−

1

4
, 0,

1

4
,
1

2
| 1,

5

4
,
3

2
∗
7

4
,
9

4
,
5

2
}

≡+ 3

4
.

�

Finally, we give the value of the game after they have only played on the

leaf farther to the x.
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Lemma 3.74 ∀n > 1, Bonxoo ≡+ 1
2 .

Proof. We show the results by indution on n.

Bonxoo = {Won−1xoo,Won−2xoo,

n−3⋃

i=0

(BoiW +Won−i−3xoo),

(Bon−2W + oWoo), (Bon−1W +W +Wo),
BonWoo, (BonWo+W ), BonxW

| (B +Bon−2xoo),

n−3⋃

i=0

(BoiB +Bon−i−3xoo),

(Bon−2B + oBoo), (Bon−1B +B +Bo),
BonBoo, (BonBo+B), BonxB}

≡+ {−
3

2
,−

3

4
,−

1

2
,−

1

4
, 0 | 1,

5

4
,
3

2
,
7

4
,
5

2
} by induction

≡+ 1

2
.

�

With all these values, we are able to give the value of any position of the

form onxoo, with n being at least 3.

Theorem 3.75 (Berlekamp et al. [4℄, Conway [10℄)

∀n > 3, onxoo ≡+ 0.

Proof.

onxoo = {Won−2xoo,
n−3⋃

i=0

(oiW +Won−i−3xoo), (on−2W + oWoo),

(on−1W +W +Wo), onWoo, (onWo+W ), onxW

| Bon−2xoo,
n−3⋃

i=0

(oiB +Bon−i−3xoo), (on−2B + oBoo),

(on−1B +B +Bo), onBoo, (onBo+B), onxB}

≡+ {−2,−
3

2
,−

5

4
,−1,−

3

4
,−

1

2
|
1

2
,
3

4
, 1,

5

4
,
3

2
, 2}

≡+ 0.

�

Example 3.76 Figure 3.15 gives an example of suh a tree, representing

o5xoo.

We now state the general theorem about grey subdivided stars.

Theorem 3.77 (Berlekamp et al. [4℄, Conway [10℄) Let T be a tree

where all verties are grey, and exatly one vertex has degree at least 3.
We all that vertex v and we root T at v.
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Figure 3.15: A subdivided star where removing the enter hanges the value

(i) If there are exatly three leaves, one at depth 1, another at depth 2 and

the last at depth at least 3, or there are an odd number of leaves at

depth 1, then the game has value 0.

(ii) Otherwise, the game has value ∗.

Proof. The �rst ase stated, with three leaves, orresponds exatly to posi-

tions of the form onxoo, that we proved have value 0 in Theorem 3.75. On

any other ase, we an use either Lemma 3.63 or 3.66 together with Theo-

rem 3.57 to remove the vertex v from the graph without hanging the value

of the position. As we only leave a disjuntive sum of paths, whih all have

value 0 apart from isolated verties, all we need to know is the parity of

the number of these isolated verties to get the value of the position. These

isolated verties were exatly the leaves at depth 1, so if they are in odd

number, the value is ∗, and otherwise it is 0. �

Example 3.78 Figures 3.16 and 3.17 give examples of subdivided stars

where the entral vertex an be removed without hanging the value: one

an apply Theorem 3.57 together with Lemma 3.63 or 3.66 in both ases,

on paths ending on leaves of the same depth status, that is the number in-

diated next to it. In Figure 3.16, the number of leaves at distane 1 from

the entral vertex, that beome isolated verties after the entral vertex is

removed, is odd, so the position has value ∗. In Figure 3.17, that number is

even, so the position has value 0. There are 9 paths on Figure 3.16 and 8 on

Figure 3.17 where we an apply Theorem 3.57 to remove the entral vertex.

3.3.3 Caterpillars

We now work on �nding the outome of grey aterpillars. Reall that a

aterpillar is a tree suh that the set of verties of degree at least 2 forms a

path. Reall that sine all verties are grey, the position is its own opposite,

and has value 0 or ∗. We here fous on aterpillars of the form xn.

First, when n is even, the position is symmetri, so it ful�ls the onditions

of Theorem 3.51.

Theorem 3.79 ∀n > 0, x2n ≡+ 0.
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3+

3+

3+ 1

3+ 1 1 2

Figure 3.16: A subdivided star with

value ∗

3+ 3+

3+

3+

1 2

1 2

Figure 3.17: A subdivided star with

value 0

When n is odd, any of the two involutions on the verties keeping edges

between the images of adjaent verties would have at least two �xed points:

the two entral verties. This is why we need intermediate lemmas. Consid-

ering all maximal onneted subpositions that players an reah from suh a

aterpillar seems tedious as they do not seem to simplify as easily as before,

so we use a di�erent approah: we �nd good enough answer for one player

and state the other player annot do better than some value to ensure some

bounds on the values of some positions leading to the value of the very �rst

game.

First, we �nd suh values and bounds on a few sets of positions, all stated

in a single lemma as the proofs are intertwined.

Lemma 3.80

1. ∀n > 1, x2nB ≡+ 3
4 and x2n−1B ≡+ 1

2 .

2. ∀n > 0, Bx2nB ≡+ 1 and Bx2n+1B ≡+ 3
2 .

3. ∀n > 0, Bx2nW ≡+ 0 and Bx2n+1W ≡+ ∗.

4. ∀n > 0,m > 0, x2nBx2mB >+ 1, x2n+1Bx2m+1B >+ 1,
x2n+1Bx2mB >+ 3

4 and x2nBx2m+1B >+ 3
4 .

5. ∀n > 0,m > 0, x2nBx2mW >+ −1
4 , x

2n+1Bx2m+1W >+ −1
4 ,

x2n+1Bx2mW >+ −1
2 and x2nBx2m+1W >+ −1

2 .

6. ∀n > 0,m > 0, Bx2nBx2mB >+ 3
2 , Bx2n+1Bx2m+1B >+ 3

2 ,

Bx2n+1Bx2mB >+ 3
2 and Bx2nBx2m+1B >+ 3

2 .

7. ∀n > 0,m > 0, Bx2nBx2mW >+ 0, Bx2n+1Bx2m+1W >+ 0,
Bx2n+1Bx2mW >+ 1

2 and Bx2nBx2m+1W >+ 1
2 .

The proof of this lemma an be found in Appendix B.3. The idea is to

list possible moves. Then, we use Theorems 3.53 and 3.55 and indution to

give a bound to the value of the position or to the value of a possible answer.
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We now show that the answer we propose for Left after some move of

Right is winning.

Lemma 3.81 ∀n > 0,m > 0, x2n+1Bx2m+1Wx >+ 0.

Proof. We prove Left has a winning strategy in x2n+1Bx2m+1Wx if Right

starts. Consider his possible moves from x2n+1Bx2m+1Wx. He an move to:

• B+oBx2n−1Bx2m+1Wx, having value at least B+x2nBx2m+1W +x,
whih has value at least

1
2 .

• xiBo+B + oBx2n−i−2Bx2m+1Wx, having value at least

1
2 or

1
2∗.

• x2n−1Bo+B +Bx2m+1Wx, having value at least 1 or 1∗.
• x2n+1B +B + oBx2m−1Wx, having value at least

3
4 .

• x2n+1BxiBo+B + oBx2m−i−2Wx, having value at least

1
4 or

1
4∗.

• x2n+1Bx2m−1Bo+B + x, having value at least 1 or 1∗.
• x2n+1Bx2mBo+Bo, having value at least

1
2 or

1
2∗.

• x2n+1Bx2m+1 +B, having value at least 1 or 1∗.
• xiBx2n−iBx2m+1Wx. Then Left an answer to xiBx2n−iBWx2mWx,

whih has value at least 0.
• x2n+1BBx2mWx, having value at least x2n+1 + Bx2m + Wx, whih

has value at least

1
4 or

1
4∗.

• x2n+1BxiBx2m−iWx. Then left an answer to

x2n+1BxiBWx2m−i−1Wx, whih has value at least 0 when i is

odd, or to x2n+1Bxi−1WBx2m−iWx, whih has value at least 0 when

i is even.
• x2n+1Bx2mBWx, having value more than

3
4 .

• x2n+1Bx2m+1WB, having value at least

1
4 .

�

We now state the theorem, that almost all aterpillars of the form xn

have value 0.

Theorem 3.82 ∀n 6= 3, xn ≡+ 0, and xxx ≡+ ∗.

Proof. When n is even, it is true by Theorem 3.79. When n 6 3, it is true
by Theorem 3.77. Now assume n > 5 is odd. We prove the seond player has

a winning strategy in xn. Without loss of generality, we may assume Right

starts the game and onsider his possible moves from xn. He an move to:

• B + oBxn−2
, having value at least 1.

• xiBo+B + oBxn−i−3
, having value at least 1 or 1∗.

• x2iBxn−2i−1
. Without loss of generality, we may assume 2i > n−1

2 > 2.
Then Left an answer to x2i−1WBxn−2i−1

, whih has value

1
4 .

• x2i+1Bxn−2i−2
. Without loss of generality, we may assume

2i+ 1 > n−1
2 > 2 . Then Left an answer to xWx2i−1Bxn−2i−2

, whih

has value at least 0.
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�

We now onsider other aterpillars. Whenever one vertex is adjaent to

two leaves or more, we an remove that vertex for the game without hanging

its value, using Lemma 3.63 and Theorem 3.57. Theorems 3.61 and 3.82 are

then enough to onlude most ases, but the value of arbitrary aterpillars

is still an open problem.

Example 3.83 Figure 3.18 shows an example of a �more general� aterpillar

of whih we an determine the value using our results. On eah step, the

vertex we an remove using Theorem 3.57 is all grey (without the blak line

surrounding it like the other verties). We added a 1 lose to its neighbouring
leaves, to see where the theorem an be applied. The dashed line is there to

ensure that anyone, by moving the inident vertex through it, sees that last

omponent as x4. On the resulting graph, there are �ve isolated verties,

eah having value ∗, an x3 and an x4, having respetively value ∗ and 0, so
the position has value 0. We get that 0 is the value of the original position,

on a onneted aterpillar.

Example 3.84 Figure 3.19 shows an example of a aterpillar whih is not

of the form xn and that annot be simpli�ed using Lemma 3.63 and Theo-

rem 3.57. Therefore, our results are not su�ient to give the value of this

position.

3.3.4 Cographs

We give an algorithm for omputing in linear time the value of a ograph

where no vertex is reserved. First, we build the assoiated otree. Then, at

eah node u of the otree starting from the leaves, we label the node by the

size of the maximum independent set and the value of the graph below it as

follows:

1. If u is a leaf, then the maximum independent set has size 1 and the value

is ∗.

2. If u orresponds to a disjoint union of two ographs, the size of the max-

imum independent set and the value are the sum of the values of these

two ographs.

3. Otherwise, u orresponds to a join of two ographs, the size of the maxi-

mum independent set is the maximum of the ones of these two ographs,

and the value is the value of the ograph whih has the maximum inde-

pendent set of greater size, exept that the value is 0 when their respetive

maximum independent sets have the same size.
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1

1 1

1

1

Figure 3.18: Finding the value of a aterpillar by removing verties aording to

Lemma 3.63 and Theorem 3.57

Figure 3.19: A aterpillar where our results annot onlude alone
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Proof. We only need to ensure by indution that if the value of the graph is

∗, any player who starts the game has a winning strategy suh that their �rst

move is on a vertex ontained in a maximum independent set. When the

graph is a single vertex the result is true. When the graph is a disjoint union

of two ographs, the �rst player has a winning move only if one omponent

has value ∗ and the other omponent has value 0. A winning move is to move

the omponent of value ∗ to value 0, and there exists suh a move on a vertex

ontained in a maximum independent set of that omponent by indution.

That vertex is also ontained in a maximum independent set of the whole

graph, so the result is true. When the graph is a join of two ographs, the

�rst player has a winning move only if the omponent having the maximum

independent set of greater size has value ∗. A winning move is to move that

omponent of value ∗ to value 0, and there exists suh a move on a vertex

ontained in a maximum independent set of that omponent by indution.

That vertex is also ontained in a maximum independent set of the whole

graph, so the result is true. �

Example 3.85 Figures 3.20 and 3.21 illustrate the algorithm. Figure 3.20

is a ograph with all verties grey. Figure 3.21 is the assoiated otree:

the leaves orrespond to the verties of the ograph; the D internal nodes

indiate when two ographs are gathered into one through disjoint union; the

J internal nodes indiate when two ographs are gathered into one through

join. Next to eah node, there is a ouple indiating the value and the size of

a maximum independent set of the subgraph indued by the verties below

that node.

3.4 Perspetives

In this hapter, we onsidered the games Timbush, Toppling Dominoes

and Col.

In the ase of Timbush, we gave an algorithm to �nd the outome of any

orientation of paths with oloured ars and an algorithm to �nd the outome

of any direted graph with ars oloured blak or white.

Note that if the onneted direted graph we onsider ontains a 2-edge-
onneted omponent, any ar of that omponent is a winning move, but if

all these ars are blak, or they are all white, we do not know if the other

player have a winning move.

Hene we ask the following questions.

Question 3.86 Can one �nd a polynomial-time algorithm whih gives the

outome of any Timbush position on direted graphs with oloured ars?

Another di�erene in result with Timber is that we do not give the value

of any orientation of paths. That problem is already non-trivial if we only

look at orientation of paths with ars oloured blak or white.
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a b c d e

f g

h i j

Figure 3.20: A ograph

a
(∗, 1)

c
(∗, 1)

b
(∗, 1)

d
(∗, 1)

e
(∗, 1)

f

(∗, 1)

g
(∗, 1)

h
(∗, 1)

i
(∗, 1)

j

(∗, 1)

D (0, 2)

J (0, 2)

D (0, 3)

J(0, 1)

J
(0, 3)

D (0, 2)

J(∗, 3)

D (0, 2)

D(∗, 3)

Figure 3.21: Its orresponding otree, labelled by our algorithm
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Question 3.87 Is there a polynomial-time algorithm for �nding the value of

any Timbush position on direted paths with ars oloured blak or white?

In the ase of Toppling Dominoes, we proved that for any value of

the form {a|b} with a > b, {a||b|c} with a > b > c, and {a|b||c|d} with

a > b > c > d, there exists a Toppling Dominoes position on a single row

that have this value. We even found all representatives of positions of the

form {a|b}, whih leads us to the following onjetures.

Conjeture 3.88 Let a > b > c be numbers and G a Toppling Dominoes

position with value {a|{b|c}}. Then G is aLRbRLc, aEbRLc or one of their
reversal. Furthermore, if a = b, then G is aLRbRLc or its reversal.

Conjeture 3.89 Let a > b > c > d be numbers and G a Toppling

Dominoes position with value {{a|b}|{c|d}}. Then G is bRLaLRdRLc,
bRLaEdRLc or one of their reversal.

In the ase of Col, we restated some known results and went further in

�nding the values of most grey aterpillars and all grey ographs. Neverthe-

less, the problem on general trees is still open.

Question 3.90 What is the omplexity of �nding the outome of any Col

position on a tree?
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Chapter 4

Misère games

The misère version of a game is a game with the same game tree where the

vitory ondition is reversed, that is the �rst player unable to move when it is

their turn wins. Under the misère onvention, the equivalene of two games

is very limited, as proved by Mesdal and Ottaway [25℄ and Siegel in [38℄. In

partiular, the equivalene lass of 0 is restrited to 0 itself, whih shows a

serious ontrast with the normal onvention where any game having outome

P is equivalent to 0. This is probably why Plambek and Siegel de�ned in

[32, 34℄ an equivalene relationship under restrited universes, leading to a

breakthrough in the study of misère play games.

De�nition 4.1 (Plambek and Siegel [32, 34℄) Let U be a universe of

games, G and H two games (not neessarily in U). We say G is greater

than or equal to H modulo U in misère play and write G >− H (mod U)
if o−(G +X) > o−(H +X) for every X ∈ U . We say G is equivalent to H
modulo U in misère play and write G ≡− H (mod U) if G >− H (mod U)
and H >− G (mod U).

For instane, Plambek and Siegel [32, 33, 34℄ onsidered the universe of

all positions of given games, espeially otal games. Other universes have

been onsidered, inluding the universes A of sums of alternating games [27℄,

I of impartial games [4, 10℄, D of diot games [2, 26, 24℄, E of dead-ending

games [28℄, and G of all games [38℄. These lasses are ordered by inlusion

as follows:

I ⊂ D ⊂ E ⊂ G .

To simplify notation, we use from now on >
−
U and ≡−

U to denote superi-

ority and equivalene modulo the universe U . Observe also that if U and U ′

are two universes with U ⊆ U ′
, then for any two games G and H, G 6

−
U H

whenever G 6
−
U ′ H.

Given a universe U , we an determine the equivalene lasses under ≡−
U

and form the quotient semi-group U/ ≡−
U . This quotient, together with the

tetra-partition of elements into the sets L, N , P and R, is alled the misère

monoid of the set U , denoted MU . It is usually desirable to have the set of

games U losed under disjuntive sum, taking options and onjugates; when

a set of games is not already thus losed, we often onsider its losure under

these three operations, that we all the losure of the set.
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A Left end is a game where Left has no move, and a Right end is a

game where Right has no move. In misère play, end positions are important

positions to see for a set of games if their onjugates are their opposites, that

is if G+G ≡−
U 0.

Lemma 4.2 Let U be any game universe losed under onjugation and

followers, and let S be a set of games losed under followers. If

G+G+X ∈ L− ∪ N−
for every game G ∈ S and every Left end X ∈ U ,

then G+G ≡−
U 0 for every G ∈ S.

Proof. Let S be a set of games with the given onditions. Sine U is losed

under onjugation, by symmetry we also have G + G + X ∈ R− ∪ N−
for

every G ∈ S and every Right end X ∈ U . Let G be any game in S and

assume indutively that H +H ≡−
U 0 for every follower H of G. Let K be

any game in U , and suppose Left wins K. We must show that Left an win

G+G+K. Left should follow her usual strategy in K; if Right plays in G
or G to, say, GR +G +K ′

, with K ′ ∈ L− ∪ P−
, then Left opies his move

and wins as the seond player on GR+G
L
+K ′ = GR+GR+K ′ ≡−

U 0+K ′
,

by indution. Otherwise, one Left runs out of moves in K, say at a Left

end K ′′
, she wins playing next on G+G+K ′′

by assumption. �

The universes we fous on in this hapter are the diot universe, denoted

D, and the dead-ending universe, denoted E . A game is said to be diot

either if it is {·|·} or if it has both Left and Right options and all these

options are diot. A Left (Right) end is a dead end if every follower is also

a Left (Right) end. A game is said to be dead-ending if all its end followers

are dead ends.

As with normal games, to simplify proofs, we often do not state results

on the onjugates of games on whih we proved similar results. With the

following proposition, we justify this possibility and we observe that passing

by onjugates in the universe of onjugates, any result on the Left options

an be extended to the Right options, and vie versa.

Proposition 4.3 Let G and H be any two games, and U a universe. Denote

by U the universe of the onjugates of the elements of U . If G >
−
U H, then

G 6
−
U
H. As a onsequene, G ≡−

U H ⇐⇒ G ≡−
U
H.

Proof. For a game X ∈ U , suppose Left an win G + X playing �rst

(respetively seond). We show that she also has a winning strategy on

H +X. Looking at onjugates, Right an win G+X = G+X. As X ∈ U

and G >
−
U H, Right an win H +X . Thus Left an win H +X = H +X

and G 6
−
U
H. �

Relying on this proposition, we often give the results only on Left options

in the following, keeping in mind that they naturally extend to the Right
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options provided the result holds on the universe of onjugate. This is always

the ase in the following sine we either prove our results on all universes,

or on the universe D of diots or E of dead-endings whih are their own

onjugates.

Considering a game, it is quite natural to observe that adding an option

to a player who already has got some an only improve his position (hand-

tying priniple). It was already proved in [25℄ in the universe G of all games.

As a onsequene, this is true for any subuniverse U of G.

Proposition 4.4 Let G be a game with at least one Left option, S a set

of games and U a universe of games. Let H be the game de�ned by

HL = GL ∪ S and HR = GR
. Then H >

−
U G.

In this hapter, we frequently use the fat that, when H has an additive

inverse H ′
modulo U , G >

−
U H if and only if G + H ′ >

−
U 0 when all these

games are elements of U .

Proposition 4.5 Let U be a universe of game losed under disjuntive sum,

H,H ′ ∈ U be two games being inverses to eah other modulo U . Then for

any game G ∈ U , we have G >
−
U H if and only if G+H ′ >

−
U 0.

Proof. Assume �rst G >
−
U H. Let X ∈ U a game suh that Left wins X.

Then, as H+H ′ ≡−
U 0, Left wins H+H ′+X. As H ′+X ∈ U and G >

−
U H,

Left wins G+H ′ +X. Hene G+H ′ >
−
U 0.

Assume now G+H ′ >
−
U 0. Let X ∈ U a game suh that Left wins H+X.

As H + X ∈ U and G + H ′ >
−
U 0, Left wins G + H ′ + H + X. Then, as

G+X ∈ U and H +H ′ ≡−
U 0, Left wins G+X. Hene G >

−
U H. �

In this hapter, we �rst onsider the games we studied previously, now

under misère onvention, and study some misère universes. Setion 4.1 is

dediated the spei� games we mentioned, on whih we give omplexity

results and ompare them with their normal version ounterparts. In Se-

tion 4.2, we study the universe of diot games, de�ne a anonial form for

them, and ount the number of diot games in anonial form born by day

3. In Setion 4.3, we study the universe of dead-ending games, in partiular

dead ends, normal anonial-form numbers and a family of games that would

be equivalent to 0 modulo the dead-ending universe.

The results presented in Subsetion 4.1.1 are a joint work with Sylvain

Gravier and Simon Shmidt. The results presented in Setion 4.1.2 are about

to appear in [16℄ (joint work with Éri Duhêne). The results presented

in Subsetion 4.1.3 appeared in [29℄ (joint work with Rihard Nowakowski,

Emily Lamoureux, Stephanie Mellon and Timothy Miller). The results pre-

sented in Subsetion 4.1.6 are a joint work with Paul Dorbe and Éri Sopena.

The results presented in Setion 4.2 are a joint work with Paul Dorbe, Aaron

Siegel and Éri Sopena [15℄. The results presented in Setion 4.3 appeared

in [28℄ (joint work with Rebea Milley).
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4.1 Spei� games

We start by looking at the games we studied in the previous hapters, with

the addition of one game, Geography, and give some results about their

misère version. In partiular, we see that some games, suh as VertexNim,

behave similarly in their misère and normal version, while others, suh as

Col, ask for a di�erent strategy from the players. The omplexity of �nding

the outome of a position might also be di�erent in some games.

In this setion, we de�ne the impartial game Geography and show the

pspae-ompleteness of its variants under the misère onvention. We then

trat our results on VertexNim from normal play to misère play, �nd the

misère outome of Timber positions on oriented paths, redue Timbush

positions to forests, give the misère outome of any single row of Toppling

Dominoes and the misère monoid of Toppling Dominoes positions with-

out grey dominoes, and the misère outome of any Col position on a grey

subdivided star.
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Figure 4.1: Playing a move in Vertex Geography

4.1.1 Geography

Geography is an impartial game played on a direted graph with a token

on a vertex. There exist two variants of the game: Vertex Geography

and Edge Geography. A move in Vertex Geography is to slide the

token through an ar and delete the vertex on whih the token was. A move

in Edge Geography is to slide the token through an ar and delete the

edge on whih the token just slid. In both variants, the game ends when the

token is on a sink.

A position is desribed by a graph and a vertex indiating where the

token is.

Example 4.6 Figure 4.1 gives an example of a move in Vertex Geogra-

phy. The token is on the white vertex. The player whose turn it is hooses

to move the token through the ar to the right. After the vertex is removed,

some verties (on the left of the direted graph) are no longer reahable.

Figure 4.2 gives an example of a move in Edge Geography. The token is

on the white vertex. The player whose turn it is hooses to move the token

through the ar to the right. After that move, it is possible to go bak to

the previous vertex immediately as the ar in the other diretion is still in

the game.

Geography an also be played on an undireted graph G by seeing it

as a symmetri direted graph where the vertex set remains the same and

the ar set is {(u, v), (v, u)|(u, v) ∈ E(G)}, exept that in the ase of Edge

Geography, going through an edge (u, v) would remove both the ar (u, v)
and the ar (v, u) of the direted version.

Example 4.7 Figure 4.3 gives an example of a move in Edge Geography

on an undireted graph. The token is on the white vertex. The player whose

turn it is hooses to move the token through the ar to the right. After that

move, it is not possible to go bak to the previous vertex immediately as the

edge between the two verties has been removed from the game.
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Figure 4.2: Playing a move in Edge Geography

Figure 4.3: Playing a move in Edge Geography on an undireted graph

A Geography position is denoted (G,u) where G is the graph, or the

direted graph, on whih the game is played, and u is the vertex of G where

the token is.

Lihtenstein and Sipser [22℄ proved that �nding the normal outome of

a Vertex Geography position on a direted graph is pspae-omplete.

Shaefer proved that �nding the normal outome of an Edge Geogra-

phy position on a direted graph is pspae-omplete. On the other hand,

Fraenkel, Sheinerman and Ullman [18℄ gave a polynomial algorithm for �nd-

ing the normal outome of aVertex Geography position on an undireted

graph, and they also proved that �nding the normal outome of an Edge

Geography position on an undireted graph is pspae-omplete.

We here look at these games under the misère onvention, and show

the problem is pspae-omplete both on direted graphs and on undireted

graphs, for both Vertex Geography and Edge Geography.

First note that all these problems are in pspae as the length of a game

of Vertex Geography is bounded by the number of its verties, and the

length of a game of Edge Geography is bounded by the number of its
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edges.

We start with Vertex Geography on direted graphs, where the re-

dution is quite natural, we just add a losing move to every position of the

previous graph, move that the players will avoid until it beomes the only

available move, that is when the original game would have ended.

Theorem 4.8 Finding the misère outome of a Vertex Geography po-

sition on a direted graph is pspae-omplete.

Proof. We redue the problem from normal Vertex Geography on di-

reted graphs.

Let G be a direted graph. Let G′
be the direted graph with vertex set

V (G′) = {u1, u2|u ∈ V (G)}

and ar set

A(G′) = {(u1, v1)|(u, v) ∈ A(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where eah vertex of G gets one extra out-neighbour that

was not originally in the graph. We laim that the normal outome of (G, v)
is the same as the misère outome of (G′, v1) and show it by indution on

the number of verties in G.
If V (G) = {v}, then both (G, v) and (G′, v1) are P-positions. Assume

now |V (G)| > 2. Assume �rst (G, v) is an N -position. There is a winning

move in (G, v) to (G̃, u). We show that moving from (G′, v1) to (Ĝ′, u1) is a
winning move. We have V (Ĝ′) = V (G̃′) ∪ {v2} and A(Ĝ′) = A(G̃′). As the
vertex v2 is disonneted from the vertex u1 in Ĝ′

, the games (Ĝ′, u1) and
(G̃′, u1) share the same game tree, and they both have outome P by indu-

tion. Hene (G′, v1) has outome N . Now assume (G, v) is a P-position.
For the same reason as above, moving from (G′, v1) to any (Ĝ′, u1) would
leave a game whose misère outome is the same as the normal outome of a

game obtained after playing a move in (G, v), whih is N . The only other

available move is from (G′, v1) to (Ĝ′, v2), whih is a losing move as it ends

the game. Hene (G′, v1) has outome P. �

The proof in [22℄ atually works even if we only onsider planar bipartite

direted graphs with maximum degree 3. As our redution keeps the pla-

narity and the bipartition, only adds verties of degree 1 and inreases the

degree of verties by 1, we get the following orollary.

Corollary 4.9 Finding the misère outome of a Vertex Geography po-

sition on a planar bipartite direted graph with maximum degree 4 is pspae-
omplete.

For undireted graphs, adding a new neighbour to eah vertex would work

the same, but the normal version of Vertex Geography on undireted



108 4.1. Spei� games
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Figure 4.4: The ar gadget

graph is solvable in polynomial time, so we redue from direted graphs, and

replae eah ar by an undireted gadget. That gadget would need to at

like an ar, that is a player who would want to take it in the wrong diretion

would lose the game, as well as a player who would want to take it when the

vertex at the other end has already been played, and we want to fore that

a player who takes it is the player who moves the token to the other end, so

that it would be the other player's turn when the token reah the end vertex

of the ar gadget, as in the original game.

Theorem 4.10 Finding the misère outome of a Vertex Geography po-

sition on an undireted graph is pspae-omplete.

Proof. We redue the problem from normal Vertex Geography on di-

reted graphs.

We introdue a gadget that will replae any ar (u, v) of the original

direted graph, and add a neighbour to eah vertex to have an undireted

graph whose misère outome is the normal outome of the original direted

graph.

Let G be a direted graph. Let G′
be the undireted graph with vertex

set

V (G′) = {u, u′|u ∈ V (G)}
∪ {uvi|(u, v) ∈ A(G), i ∈ J1; 8K}

and edge set

E(G′) = {(u, uv1), (uv1, uv2), (uv1, uv3), (uv1, uv6), (uv2, uv4), (uv3, uv5),
(uv3, uv6), (uv4, uv5), (uv4, uv6), (uv5, uv6), (uv6, uv7), (uv7, uv8),
(uv7, v)|(u, v) ∈ A(G)}

∪ {(u, u′)|u ∈ V (G)}

that is the graph where every ar (u, v) of G has been replaed by the gadget

of Figure 4.4, identifying both u verties and both v verties, and eah vertex
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of G gets one extra neighbour that was not originally in the graph. We

laim that the normal outome of (G,u) is the same as the misère outome

of (G′, u) and show it by indution on the number of verties in G.
If V (G) = u, then (G,u) is a normal P-position. In (G′, u) the �rst

player an only move to (Ĝ′, u′) where the seond player wins as he annot

move.

Now assume |V (G)| > 2.
We �rst show that no player wants to move the token from v to any wv7,

whether w has been played or not. We will only prove it for moving the

token from v to some wv7 where w is still in the game, as the other ase is

similar. First note that if w is removed from the game in the sequene of

move following that �rst move, as v is already removed, all verties of the

form wvi would be disonneted from the token, and therefore unreahable.

Hene whether the move from wv1 to w is winning does not depend on the

set of verties deleted in that sequene, and it is possible to argue the two

ases. Assume the �rst player moved the token from v to any wv7. Then

the seond player an move the token to wv6. From there, the �rst player

has four hoies. If she goes to wv1, the seond player answers to wv2, then
the rest of the game is fored and the seond player wins. If she goes to

wv4, he answers to wv2 where she an only move to wv1, and let him go to

wv3 where she is fored to play to wv5 and lose. The ase where she goes to

wv5 is similar. In the ase where she goes to wv3, we argue two ases: if the

move from wv1 to w is winning, he answers to wv5, where all is fored until

he gets the move to w; if that move is losing, he answers to wv1, from where

she an either go to w, whih is a losing move by assumption, or go to wv2
where every move is fored until she loses.

We now show that no player wants to move the token from v to any vw1

where w has already been played. Assume the �rst player just played that

move. Then the seond player an move the token to vw3. From there, the

�rst player have two hoies. If she plays to vw6, he answers to vw4, where

she an only end the game and lose. If she plays to vw5, he answers to vw4,

where the move to vw2 is immediately losing, and the move to vw6 fores

the token to go to vw7 and then vw8 where she loses.

Assume �rst that (G,u) is an N -position. There is a winning move in

(G,u) to some (G̃, v). We show that moving the token from u to uv1 in G′
is

a winning move for the �rst player. From there, the seond player has three

hoies. If he moves the token to uv6, the �rst player answers to uv3, then
the rest of the game is fored and the �rst player wins. If he moves the token

to uv2, the �rst player answers to uv4, where the seond player again has two

hoies: either he goes to uv6, she answers to uv5 where he is fored to lose

by going to uv3; or he goes to uv5, she answers to uv6 where the move to uv3
is immediately losing and the move to uv7 is answered to a game (Ĝ′, v). As
u′ and all verties of the form uvi are either played or disonneted from v
in Ĝ′

, the only di�erenes in the possible moves in (followers of) the games
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(Ĝ′, v) and (G̃′, v) are moves from a vertex w to wu1 or to wu7, so they both

have outome P by indution. The ase where he hooses to move the token

to uv3 is similar. Hene (G′, u) is an N -position.

Now assume (G,u) is a P-position. Then any (G̃, v) that an be obtained

after a move from (G,u) is an N -position. Moving the token to u′ in G′
is

immediately losing, so we may assume the �rst player moves it to some uv1,
where the seond player answers to uv3. From there the �rst player has two

hoies. If she goes to uv6, the seond player answers by going to uv4, where
both available moves are immediately losing. If she goes to uv5, he answers
to uv4, where the move to uv2 is immediately losing, and the move to uv6 is
answered to uv7, where again the move to uv8 is immediately losing, so we

may assume he moves the token to v. As u′ and all verties of the form uvi
are either played or disonneted from v in Ĝ′

, the only di�erenes in the

possible moves in (followers of) the games (Ĝ′, v) and (G̃′, v) are moves from

a vertex w to wu1 or to wu7, so they both have outome N by indution.

Hene (G′, u) is a P-position. �

Again, using the fat that the proof in [22℄ atually works even if we

only onsider planar bipartite direted graphs with maximum degree 3, as
our redution keeps the planarity sine the gadget is planar with the verties

we link to the rest of the graph being on the same fae, only adds verties

of degree at most 5 and inreases the degree of verties by 1, we get the

following orollary.

Corollary 4.11 Finding the misère outome of a Vertex Geography po-

sition on a planar undireted graph with degree at most 5 is pspae-omplete.

Though misère play is generally onsidered harder to solve than normal

play, the feature that makes it hard is the fat that disjuntive sums do not

behave as niely as in normal play, and Geography is a game that does

not split into sums. Hene the above result appears a bit surprising as it was

not expeted.

We now look at Edge Geography where the redutions are very similar

to the one for Vertex Geography on direted graphs.

We start with the undireted version.

Theorem 4.12 Finding the misère outome of an Edge Geography po-

sition on an undireted graph is pspae-omplete.

Proof. We redue the problem from normal Edge Geography on undi-

reted graphs.

Let G be an undireted graph. Let G′
be the undireted graph with

vertex set

V (G′) = {u1, u2|u ∈ V (G)}
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and edge set

E(G′) = {(u1, v1)|(u, v) ∈ E(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where eah vertex of G gets one extra neighbour that was

not originally in the graph. We laim that the normal outome of (G, v) is
the same as the misère outome of (G′, v1) and show it by indution on the

number of verties in G. The proof is similar to the proof of Theorem 4.8 �

We now look at Edge Geography on direted graphs.

Theorem 4.13 Finding the misère outome of an Edge Geography po-

sition on a direted graph is pspae-omplete.

Proof. We redue the problem from normal Edge Geography on direted

graphs.

Let G be a direted graph. Let G′
be the direted graph with vertex set

V (G′) = {u1, u2|u ∈ V (G)}

and ar set

A(G′) = {(u1, v1)|(u, v) ∈ A(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where eah vertex of G gets one extra out-neighbour that

was not originally in the graph. We laim that the normal outome of (G, v)
is the same as the misère outome of (G′, v1) and show it by indution on the

number of verties in G. The proof is similar to the proof of Theorem 4.8 �

4.1.2 VertexNim

In VertexNim, the misère version seems to behave like the normal version.

The results we obtained in Setion 2.1 are extensible to misère games.

First we look atAdjaent Nim, that isVertexNim on a iruit. Again,

we only onsider positions with no 1 ourring as initial positions. We get a

result similar to the one in the normal version.

Theorem 4.14 Let (Cn, w, v1), n > 3 be an instane of Vertexnim with

Cn the iruit of length n and w : V → N>1.

• If n is odd, then (Cn, w, v1) is an N -position.

• If n is even, then (Cn, w, v1) is an N -position if and only if the smallest

index of a vertex of minimum weight, that is min{argmin
16i6n

w(vi)}, is

even.

Proof.
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• Case (1) If n is odd, then the �rst player an apply the following

strategy to win: �rst, she plays w(v1) → 1. Then for all 1 6 i < n−1
2 :

if the seond player empties v2i, then the �rst player also empties

the following vertex v2i+1. Otherwise, she plays w(v2i+1) → 1. This

time, the strategy is not di�erent for the last two verties of Cn. As

w(v1) = 1, the seond player is now fored to empty v1. Sine an

odd number of verties was deleted sine then, we now have an even

iruit to play on. It now su�es for the �rst player to empty all the

verties on the seond run. Indeed, the seond player is also fored to

set eah weight to 0 sine he has to play on verties satisfying w = 1.
Sine the iruit is even, the �rst player is guaranteed to leave the

last move to the seond player.

• Case (2) If n is even, we laim that who must play the �rst vertex

of minimum weight will lose the game. The winning strategy of the

other player onsists in dereasing by 1 the weight of eah vertex at

their turn. Assume that min{argmin
16i6n

w(vi)} is odd. If the strategy of

the seond player always onsists in moving w(vi) → w(vi) − 1, then
the �rst player will be the �rst to set a weight to 0 or 1. If she sets the
weight of a vertex to 0, then the seond player now faes an instane

(C ′
n−1, w

′) with w′ : V ′ → N>1, whih is winning aording to the

previous item. If she sets the weight of a vertex to 1, then the seond

player will empty the following vertex, leaving to the �rst player a

position (C ′
n−1 = (v′1, v

′
2, . . . , v

′
N−1), w

′) with w′ : V ′ → N>1 exept on

w′(v′n−1) = 1. This position orresponds to the one of the previous

item after the �rst move, and is thus losing. A similar argument shows

that the �rst player has a winning strategy if min{argmin
16i6n

w(vi)} is

even.

�

The reader would have seen the similarity between the proofs of normal

version and misère version. The following results are even more similar in

their proof, this is why we do not reall the proofs in their entirety.

We now state how to �nd the misère outome of a VertexNim position

on any undireted graph.

Theorem 4.15 Let (G,w, u) be an instane of VertexNim, where G is an

undireted graph. Deiding whether the misère outome of (G,w, u) is P or

N an be done in O(|V (G)||E(G)|) time.

Proof. If all verties have weight 1, then (G,w, u) is an N -position if and

only if |V (G)| is even sine it redues to the misère version of �She loves

move, she loves me not�. Otherwise, we an use the same proof as the one
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of Theorem 2.9 to see that (G,w, u) is N in the misère version if and only if

it is N in the normal version. �

Finally, we state how to �nd the misère outome of a VertexNim posi-

tion on any direted graph with a self loop on eah vertex.

Theorem 4.16 Let (G,w, u) be an instane of VertexNim, where G is

strongly onneted, with a loop on eah vertex. Deiding whether the misère

outome of (G,w, u) is P or N an be done in time O(|V (G)||E(G)|).

Proof. If all verties have weight 1, then (G,w, u) is an N position if and

only if |V (G)| is even sine it redues to the misère version of �She loves

move, she loves me not�. Otherwise, we an use the same proof as the one

of Theorem 2.7 to see that (G,w, u) is N in the misère version if and only if

it is N in the normal version. �

4.1.3 Timber

In Timber, going to misère is already harder. Though we an still redue

the game to an oriented forest, whih happens to be the same forest as for

normal play, we an only give a polynomial algorithm for �nding the misère

outome of an oriented path.

Theorem 4.17 Let G be a direted graph seen as a Timber position suh

that there exist a set S of verties that forms a 2-edge-onneted omponent

of G, and x, y two verties not belonging to G. Let G′
be the direted graph

with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and ar set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

Then G =− G′
.

Proof. The proof is idential to the proof of Theorem 2.14 as we never used

the fat we were under the normal onvention. �

As in normal play, we get the following orollary.

Corollary 4.18 For any direted graph G, there exists an oriented forest FG

suh that G =+ FG and G =− FG. Moreover, FG is omputable in quadrati

time.

The following proposition remains true as well for the same reason.
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Proposition 4.19 Let T be an oriented tree suh that there exist three sets

of verties {ui}06i6k, {vi}06i6k, {wi}06i6ℓ ⊂ V (G) suh that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ) ⊂ A(G),

2. (uk, w0), (vk, wℓ) ∈ A(G),

3. u0 and v0 have in-degree 0 and out-degree 1,

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1.

Let T ′
be the oriented tree with vertex set

V (T ′) = V (T ) \ {vi}06i6k

and ar set

A(T ′) = A(T ) \ ({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}).

Then T =− T ′
.

Proof. The proof is idential to the proof of Proposition 2.17 as we never

used the fat we were under the normal onvention. �

On paths, we an use the peak representation as de�ned in Setion 2.2,

but we an also ode the problem with a word: L would represent an ar

direted leftward while R would represent an ar direted rightward. As in

Setions 2.2 and 3.1, we an see it as a row of dominoes that would topple

everything in one diretion when hosen, where hosen dominoes an only

be toppled fae up. The position is read from left to right.

Given the alphabet {L,R}, for a word w, let |w|L be the num-

ber of L's in w, |w|R the number of R's in w and w[i,j] the subword

wiwi+1 · · ·wj . Let WP be the set of words w suh that for any i,
|w[0,i]|L > |w[0,i]|R and |w|L = |w|R; and SWP be the set of words

w suh that w ∈ WP and ∀w1, w2 ∈ WP , w 6= w1LRw2. We de�ne

X = (SWP\{∅}) ∪ {Rw | w ∈ SWP} ∪ {wL | w ∈ SWP} ∪ {RwL | w ∈ SWP}.

We note w̃ the word obtained from w after removing the �rst harater if it

is an R and the last one if it is an L.

The reader would have reognised WP as the set of normal P-positions
of Timber on a path. We now prove that misère P-positions of Timber on

a path are those belonging to X, that is all words w suh that w̃ ∈ SWP
but the empty word.

Theorem 4.20 In misère play, the P-positions of Timber on a path are

exatly those whih orrespond to words of X.
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Proof. Let w ∈ X be a position. Assume w ∈ (SWP\{∅}). From the

normal play analysis, we know that the �rst player annot move to a position

in SWP ⊂ WP . Assume the �rst player an move to a position Rw0 with

w0 ∈ SWP . Then it follows that w = w1LRw0 for some w1. As w,w0 ∈ WP
then w1 ∈ WP , whih is not possible sine w ∈ SWP . Similarly, we an

prove the �rst player has no move to a position of the form w0L or Rw0L
with w0 ∈ SWP . Similarly, we an prove the �rst player has no move to a

position in X from a position in X.

Let w /∈ X ∪ {∅}. Assume w ∈ WP . Then there exist w1, w2 ∈ WP
suh that w = w1LRw2, and we an hoose them suh that w2 ∈ SWP .
From w, the �rst player an move to Rw2 ∈ X. Similarly, we an

prove the �rst player has a move to a position in X from a position in

({Rw | w ∈ WP} ∪ {wL | w ∈ WP} ∪ {RwL | w ∈ WP})\X .

Now assume w[0,1] = RR. The �rst player an move to R ∈ X.

Now assume w is none of the above forms. Thus w̃ starts with an L and

ends with an R, and is not in WP , so the �rst player has a move from w̃
to a position w0 ∈ WP\{∅}. Without loss of generality, we an assume it is

by toppling a domino leftward. If w0 ∈ SWP , the same move from w leaves

the position w0 ∈ X or w0L ∈ X. Otherwise, there exist w1, w2 ∈ WP suh

that w0 = w1LRw2 and we an hoose w2 ∈ SWP . The �rst player an

then move from w to Rw2 ∈ X or Rw2L ∈ X. �

SWP is the set of Timber positions whose peak representations are Dyk

paths without peaks at height 1. The number of suh Dyk paths of length

2n is the nth
Fine number Fn = 1

2

∑−2
i=0(−1)icn−i

(
1
2

)i
, where ck = (2k)!

k!(k+1)!

is the kth Catalan number [31℄. This gives us the number of Timber misère

P-positions on paths of length n: there are no Timber misère P-positions

on paths of length 0; there are 2Fn =
∑−2

i=0(−1)icn−i

(
1
2

)i
Timber misère

P-positions on paths of length 2n+ 1; there are Fn + Fn−1 Timber misère

P-positions on paths of length 2n.

That last number is also the number of Dyk paths of length 2n with no

peak at height 2 before the �rst time the path returns at height 0. We an

de�ne a bijetion between Timber misère P-positions on paths of length 2n
and Dyk paths of length 2n with no peak at height 2 before the �rst time

the path returns at height 0 as follows (using their word representation): if

the word an be written w1Lw2R with both w1 and w2 representing Dyk

paths (note that w1 might be empty, but not w2), its image is Lw1Rw2.

otherwise, the word an be written RwL with w representing a Dyk path,

and its image is LwR. Figure 4.5 gives examples of the bijetion, using the

peak representation. The Timber misère P-positions are on the left, and at

their right are their images through the bijetion.
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→

→

→

Figure 4.5: Timber misère P-positions and their images, Dyk paths with no

peak at height 2 before the �rst return to 0

4.1.4 Timbush

For Timbush, we still redue the direted graph to an oriented forest, but

our knowledge stops there. Even on an oriented path, �nding the misère

outome seems hallenging.

Theorem 4.21 Let G be a direted graph seen as a Timbush position suh

that there exist a set S of verties that forms a 2-edge-onneted omponent

of G, and x, y two verties not belonging to G. Let G′
be the direted graph

with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and ar set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)},

keeping the same olours, where the olour of (y, x) is grey if the ars in

S yields di�erent olours, and of the unique olour of ars in S otherwise.

Then G =− G′
.

Proof. The proof is idential to the proof of Theorem 3.4 as we never used

the fat we were under the normal onvention. �

As in normal play, we get the following orollary.

Corollary 4.22 For any direted graph G, there exists an oriented forest

FG suh that G =+ FG and G =− FG and FG is omputable in quadrati

time.

The following proposition is true as well, for the same reason.
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Proposition 4.23 Let T be an oriented tree suh that there exist three sets

of verties {ui}06i6k,{vi}06i6k,{wi}06i6ℓ ⊂ V (G) suh that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ ⊂ A(G),

2. {(uk, w0), (vk, wℓ)}) ⊂ A(G),

3. u0 and v0 have in-degree 0 and out-degree 1,

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1,

5. for all 1 6 i 6 k, (uk−1, uk) and (vk−1, vk) have the same olour.

6. (uk, w0) and (vk, wℓ) have the same olour.

Let T ′
be the oriented tree with vertex set

V (T ′) = V (T )\{vi}06i6k

and ar set

A(T ′) = A(T )\({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}),

keeping the same olours, apart from (uk, w0) whih beomes grey when

(uk, w0) and (vk, wℓ) had di�erent olours in T . Then T =− T ′
.

Proof. The proof is idential to the proof of Proposition 3.7 as we never

used the fat we were under the normal onvention. �

4.1.5 Toppling Dominoes

In Toppling Dominoes, the misère outome of a single row is easy to

determine, but �nding equivalene lasses in the general ase has eluded us

for now.

Proposition 4.24 The misère outome of a Toppling Dominoes position

on a single row is determined by its end dominoes and the dominoes right

next to them. For any string x,

• L,ERE,LxL,ERxL,LxRE,ERxRE ∈ R−
,

• R,ELE,RxR,ELxR,RxLE,ELxLE ∈ L−
,

• E ∈ P−
,

• ∅, EL, LE, ER, RE, LxR, RxL, EEx, xEE, ELxL, LxLE, ERxR,
RxRE, ELxRE, ERxLE ∈ N .

In partiular, we note that there is only one Toppling Dominoes po-

sition on a single row that is a misère P-position.
Nevertheless, when allowing a game on several rows, the set of Toppling

dominoes misère P-positions is in�nite, as all Nim positions are equal to a

Toppling dominoes position using only grey dominoes.
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However, if we restrit ourselves to blak and white dominoes (exluding

grey dominoes), we prove that no position is a misère P-position, no mat-

ter the number of rows of the position. We atually fully haraterise the

outome of any set of rows of blak and white dominoes.

Before stating the theorem, we de�ne a pair of funtions on sets of rows

of dominoes. For any set of rows G of blak and white dominoes, we de�ne

ltd(G) the number of rows of dominoes in G that start and end with a blak

domino. Similarly, we de�ne rtd(G) the number of rows of dominoes in G
that start and end with a white domino.

Theorem 4.25 Let G be a set of rows of blak and white dominoes. Then

o−(G) =





N−
if ltd(G) = rtd(G)

L−
if ltd(G) < rtd(G)

R−
if ltd(G) > rtd(G)

Proof. We prove the result by indution on the number of dominoes in G.
If there is no domino, the outome is trivially N .

Assume now there is at least one domino. Assume �rst ltd(G) = rtd(G).
If ltd(G) > 0, Left an play a domino on the edge of a row that starts and ends

with a blak domino to remove it from the game, moving to a positionG′
suh

that ltd(G
′) = ltd(G)−1 = rtd(G)−1 = rtd(G

′)−1, whih is an L-position by

indution. Otherwise, we may assume without loss of generality that there is

a row that starts with a blak domino and ends with a white domino. Left an

hoose the rightmost blak domino of that row and topple it leftward, moving

to a position G′
suh that rtd(G

′) = rtd(G) + 1 = ltd(G) + 1 = ltd(G
′) + 1,

whih is an L-position by indution. A similar argument on Right moves

shows that G is an N -position. Assume now ltd(G) < rtd(G). Then

there exists a row that starts and ends with a white domino. If that

row ontains a blak domino, Left an hoose the rightmost blak domino

of that row and topple it leftward, moving to a position G′
suh that

rtd(G
′) = rtd(G) > ltd(G) = ltd(G

′), whih is an L-position by indution.

Otherwise, that is if all rows that start and end with a white domino on-

tain no blak domino, either she has no move and wins, or she an hoose a

blak domino at an end of a row and topple it toward the other ends, mov-

ing to a position G′
suh that rtd(G

′) = rtd(G) > ltd(G) > ltd(G
′), whih is

an L-position by indution. Whatever Right does, he an only hange the

status of one row, and only hange one of the end dominoes of this row or

empty it, moving to a position G′
where rtd(G

′)− ltd(G
′) = rtd(G)− l(tdG)

or rtd(G
′)− ltd(G

′) = rtd(G)− ltd(G) − 1, whih is either an L-position or

an N -position by indution. Hene G is an L-position.
The ase when ltd(G) > rtd(G) is similar. �

This implies that any row of blak and white dominoes starting and end-

ing with a blak domino is equivalent to a single blak domino modulo the
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universe of LR-Toppling Dominoes positions. Also any row of blak and

white dominoes starting and ending with a white domino is equivalent to a

single white domino modulo the universe of LR-Toppling Dominoes po-

sitions and any row of blak and white dominoes starting and ending with

dominoes of di�erent olours is equivalent to an empty row modulo the uni-

verse of LR-Toppling Dominoes positions. Note that this equivalene is

not true in the universe of all Toppling Dominoes positions. For example,

the position LL and L are not equivalent in this universe: L + E + E is a

misère P-position, while LL+ E + E is a misère L-position.
This equivalene allows us to ompletely desribe the misère monoid of

LR-Toppling Dominoes positions, whih we present in Theorem 4.26.

Theorem 4.26 Under the mapping

G 7→ αltd(G)−rtd(G),

the misère monoid of LR-Toppling Dominoes positions is

MZ = 〈1, α, α−1 | α · α−1 = 1〉 ∼= (Z,+)

with outome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}

and total ordering

αn > αm ⇔ n < m.

This result is quite surprising as in general, the misère version of a game

is harder than its normal version, and LR-Toppling Dominoes has not

been solved under normal onvention. From what we saw in Setion 3.2 and

results from [17℄, the struture is riher in normal play than in misère play.

4.1.6 Col

Notie �rst that all Col positions are dead-ending.

On Col, we give the outome of some lasses of graphs, and even equiv-

alene lass modulo the dead-ending universe for some of them.

We use the same notation as in Setion 3.3.

First, we present some features partiipating in explaining why misère

play seems harder than normal play for the game of Col.

Adding a blak vertex or reserving a vertex for Left would seem to be an

advantage for Right in misère play. Unfortunately, that intuition is false:

o−(o+ o) = N ; o−(oBo) = L

o−(ooo) = N ; o−(oBo) = L
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A theorem suh as Theorem 3.51 annot be stated: the seond player

would never use suh strategy as they would be sure to lose this way, and

the �rst player annot fore suh a hoie.

Now we are bak with �nding misère outomes of positions.

We start with paths. The following lemma gives the equivalene lass

modulo the dead-ending universe of paths whose end verties are blak or

white and all internal verties are grey.

Lemma 4.27

1. for any non-negative integer n, BonB ≡−
E B.

2. for any non-negative integer n, BonW ≡−
E ∅.

Proof. We show simultaneously that G+B and G+BonB have the same

outome, as well as G and G+BonW , by indution on n ∈ N and the order

of G ∈ E .
By playing on any vertex of BonB, Left goes to a game whih is equivalent

to ∅ modulo E , either by indution or beause it is ∅. By playing on any

vertex of BonB, Right goes to a game whih is equivalent to B +B modulo

E by indution or beause it is B + B. By playing on any vertex of BonW ,

Left goes to a game whih is equivalent to W modulo E by indution or

beause it is W . By playing on any vertex of BonW , Right goes to a game

whih is equivalent to B modulo E by indution or beause it is B.

Let G be a dead-ending game suh that Left wins G + B playing �rst (or

seond). On G + BonB, Left an follow her G + B strategy, unless Right

plays from some G′ + BonB to G′ + (BonB)R or the strategy reommends

her to play from some G′+B to G′
. In the former ase, Right has just moved

BonB to a game equivalent to B + B modulo E and she an put the game

on G′ + B whih she wins a priori. In the latter ase, she an move from

G′ +BonB to a game equivalent to G′
modulo E and ontinue as if she had

just moved from B to ∅.
Let G be a dead-ending game suh that Right wins G + B playing �rst (or

seond). On G + BonB, Right an follow his G + B strategy, unless Left

plays from some G′+BonB to G′+(BonB)L or he has no more move. In the

former ase, Left has just moved BonB to a game equivalent to ∅ modulo E
and he an assume she had just moved from B to ∅. In the latter ase, he

an move from G′ + BonB to a game equivalent to G′ + B + B modulo E
where he has no move and wins as he will never get any.

Hene, BonB ≡−
E B.

Let G be a dead-ending game suh that Left wins G playing �rst (or seond).

On G+BonW , Left an follow her G strategy, unless Right plays from some

G′ +BonW to G′ + (BonW )R or she has no more move. In the former ase,

Right has just moved BonW to a game equivalent to B modulo E and she

an put the game on G′
whih she wins a priori. In the latter ase, she an

move from G′ +BonW to a game equivalent to G′ +W modulo E where he
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has no move and wins as she will never get any.

A similar argument would show that when White has a winning strategy on

G, he has one on G+BonW .

Hene, BonW ≡−
E ∅. �

This implies the following result on yles, where all moves are equivalent,

leading to a position we just analysed.

Theorem 4.28 For any integer n greater than or equal to 3, we have

Cn ≡−
E ∅.

Proof. The only Left option of Cn is Won−3W , whih is equivalent to W
modulo E and the only Right option of Cn is Bon−3B, whih is equivalent

to B modulo E . Hene Cn is equivalent to {W |B} = BW modulo E , and as

BW is equivalent to ∅ modulo E , Cn is as well. �

We now look at sums of paths as it gives us the misère outome of any

grey path, and helps �nd the misère outome of bigger positions.

Lemma 4.29

1. For any non-negative integer l, any non-negative integers ni (i ∈ J1; lK),
we have Σl

i=1Woni ∈ N− ∪ L−
, that is Left has a winning strategy if she

plays �rst.

2. For any non-negative integer l, any non-negative integers ni (i ∈ J1; lK),
we have (W +Σl

i=1Woni) ∈ L−
, that is Left has a winning strategy who-

ever plays �rst.

Proof. We show the results simultaneously by indution on n = Σl
i=1ni.

If n = 0, Left has no move on either Σl
i=1Woni

or (W +Σl
i=1Woni), and as

Right has at least one move on (W +Σl
i=1Woni), the results hold.

Assume n > 1. Without loss of generality, we may assume nl > 1. If Left

plays on the non-reserved leaf of Wonl
in Σl

i=1Woni
, it beomes equivalent

to W+Σl−1
i=1Woni

modulo E , where Left has a winning strategy by indution.
Hene Left has a winning strategy on Σl

i=1Woni
if she plays �rst.

We notie (W + Σl
i=1Woni) = Σl

i=0Woni
with n0 = 0, so if Left is the

�rst player on (W + Σl
i=1Woni), then she has a winning strategy from 1.

Assume Right is the �rst player on (W +Σl
i=1Woni). If Right plays on W ,

then the game beomes (Σl
i=1Woni) where we just saw Left has a winning

strategy playing �rst. Otherwise, we may assume Right plays on a vertex

of Wonl
without loss of generality. If this vertex is the non-reserved leaf,

then the game beomes equivalent to (W +Σl−1
i=1Woni) modulo E where Left

has a winning strategy by indution. Otherwise, Left an answer on this

leaf, leaving a game equivalent to (W + Σl−1
i=1Woni) modulo E where she

has a winning strategy by indution. Hene Left has a winning strategy on

(W +Σl
i=1Woni). �

As expeted, we an use this result to �nd the outome of any grey path.
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Theorem 4.30 For any integer n greater than or equal to 2, we have

on ∈ N−
that is the �rst player has a winning strategy.

Proof. o2 and BW have the same options, so are equivalent modulo E ,
hene o2 is equivalent to ∅ modulo E .
Assume n > 3. Without loss of generality, we an assume that Left is the

�rst player. By playing on a vertex next to a leaf, Left leaves the game as

W +Won−3
, where she has a winning strategy by Lemma 4.29. Hene the

�rst player has a winning strategy on on. �

We now �nd the outome of any tree with at most one vertex having

degree at least 3. Before that, we need to �nd the outome of positions that

players might reah from these trees. We do not onsider all suh positions

as we did in normal play, sine we only need to onsider positions that our

under one player's winning strategy. We look again at sums of path, where

we re�ne the previous results. First, we add a path having exatly one

blak leaf and all other verties being grey to a sum of paths onsidered in

Lemma 4.29, assuming there are at least two single white verties.

Lemma 4.31 For any non-negative integer l, any non-negative integers ni

(i ∈ J1; l + 1K), we have (W +W +Bonl+1 +Σl
i=1Woni) ∈ L−

, that is Left

has a winning strategy whoever plays �rst.

Proof. We show the result by indution on Σl+1
i=1ni. If Left is

the �rst player, she an play on the vertex reserved for her, leaving

(W +W +Wonl+1−1 +Σl
i=1Woni) where she has a winning strategy by

Lemma 4.29.

Assume now Right is the �rst player. If he plays on a W , then Left an play

on the vertex reserved for her, leaving (W +Wonl+1−1 + Σl
i=1Woni) where

she has a winning strategy by Lemma 4.29. If he plays on a vertex of Bonl+1
,

Left an play on the vertex reserved for her, leaving a game equivalent to

(W +W +Bon
′

l+1 +Σl
i=1Woni) modulo E , where she has a winning strategy

by indution. Otherwise, we an assume without loss of generality that Right

plays on a vertex of Wonl
and that nl > 1. If it is on the non-reserved leaf,

the game beomes equivalent to (W +W +Bonl+1 +Σl−1
i=1Woni) modulo E ,

where Left has a winning strategy by indution. Otherwise, Left an answer

on this leaf, leaving a game equivalent to (W + W + Bonl+1 + Σl−1
i=1Woni)

modulo E , where she has a winning strategy by indution.

Hene Left has a winning strategy on (W +W +Bonl+1 +Σl
i=1Woni). �

We are now bak to paths where exatly one leaf is white and all other

verties are grey, but we add the extra ondition that at least two of these

paths eah ontain at least three verties.

Lemma 4.32 For any non-negative integer k, any integer l greater than or

equal to 2, any integers ni greater than or equal to 2 (i ∈ J1; lK), we have

(Σk
j=1Wo+Σl

i=1Woni) ∈ L−
, that is Left has a winning strategy.
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Figure 4.6: The tree SiW6 Figure 4.7: The tree WSio3

Proof. We show the result by indution on k. If Left is the �rst player,

then she has a winning strategy by Lemma 4.29.

Assume now Right is the �rst player. If he plays on the reserved ver-

tex of some Wo, Left an answer on the other vertex, leaving the game

as (Σk−1
j=1Wo + Σl

i=1Woni), where she has a winning strategy by indu-

tion. If he plays on the non-reserved vertex of some Wo, the game be-

omes (Σk−1
j=1Wo + Σl

i=1Woni), where Left has a winning strategy by in-

dution. Otherwise, we an assume without loss of generality that Right

plays on a vertex of Wonl
. Left an answer on the vertex next to the

non-reserved end of Wonl−1
, leaving a graph equivalent modulo E to ei-

ther (W +W +Σk
j=1Wo+Σl−2

i=1Woni), where she has a winning strategy by

Lemma 4.29, or (W +W +Bom +Σk
j=1Wo+ Σl−2

i=1Woni) for some m 6 nl,

where she has a winning strategy by Lemma 4.31. Hene, Left has a winning

strategy on (Σk
j=1Wo+Σl

i=1Woni). �

We now introdue some more notation, that we use in the following:

(i) Sicn is the intersetion graph of a star with n leaves, that is the tree

with exatly one vertex of degree at least 3 and n leaves all at distane

exatly 2 from this vertex, suh that the enter, that is the vertex of

degree n, is labelled c and all other verties are labelled o.

(ii) c1Si
c2
n is the intersetion graph of a star with n leaves, suh that the

enter is labelled c2, to whih we add a vertex labelled c1 that we link

to the enter, and all other verties are labelled o.

Example 4.33 Figure 4.6 is the oloured graph SiW6 . All its verties are

grey but the enter, whih is white. Figure 4.7 is the oloured graph WSio3.
All its verties are grey but the leaf at distane 1 from the enter, whih is

white.

We now �nd the outome, nay the equivalent lass, of these positions we

just introdued, starting with the equivalent lass of SiWn .
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Lemma 4.34 For any integer n greater than or equal to 2, we have

SiWn ≡−
E ∅.

Proof. Let G be a dead-ending game that Left wins playing �rst (or seond).

On G + SiWn , Left an follow her G strategy, unless Right plays from some

G′ + SiWn to G′ + (SiWn )R or she has no more moves. In the former ase,

there are three ases. If Right plays on a leaf of SiWn , Left an answer on

the other leaf if n = 2, leaving a game equivalent to G modulo E , where she
has a winning strategy if she plays seond, or on the vertex next to the one

Right just played on otherwise, leaving the game as G + SiWn−1 where she

has a winning strategy if she plays seond by indution. If Right plays on a

non-leaf non-reserved vertex of SiWn , Left an answer on the leaf next to it,

leaving a game equivalent to G modulo E , where she has a winning strategy

if she plays seond. If Right plays on the reserved vertex of SiWn , Left an

answer on a leaf, leaving the graph as G + Σn−1
i=1 Bo >

−
E G where she has a

winning strategy if she plays seond. In the latter ase, she an move from

G′+SiWn to a game equivalent to G′+W modulo E by indution by playing

on a non-leaf of SiWn , where she has no move and wins as she will never get

any.

Let G be a dead-ending game that Right wins playing �rst (or seond).

On G + SiWn , Right an follow his G strategy, unless Left plays from some

G′ + SiWn to G′ + (SiWn )L or he has no more moves. In the former ase,

there are two ases. If Left plays on a leaf of SiWn , Right an answer on the

vertex next to the one Left just played on, leaving a game equivalent to G′

modulo E , where he has a winning strategy if he plays seond. If Left plays

on a non-leaf non-reserved vertex of SiWn , Right an answer on a non-leaf

non-reserved vertex of SiWn , leaving a game equivalent to G modulo E , where
he has a winning strategy if he plays seond. In the latter ase, he an move

from G′ + SiWn to a game equivalent to G′ + B modulo E by playing on a

non-leaf of SiWn , where he has no move and wins as he will never get any.

Hene, SiWn ≡−
E ∅. �

We now give the outome of WSion, whih orresponds to a position

where Left would have played on a leaf of Sion+1.

Lemma 4.35 For any integer n greater than or equal to 2, we have

WSion ∈ L−
, that is Left has a winning strategy whoever plays �rst.

Proof. If Left is the �rst player, she an play on the entral vertex, leaving

the game as W +Σn
i=1Wo, where she has a winning strategy by Lemma 4.29.

Assume Right is the �rst player. If Right plays on the reserved vertex, the

game beomes equivalent to ∅ modulo E , where Left has a winning strategy

if she plays �rst. If Right plays on the entral vertex, the game beomes

Σn
i=1Bo >

−
E ∅, where Left has a winning strategy if she plays �rst. If Right

plays on any non-reserved leaf, Left an answer on the entral vertex, leaving
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the game as W+Σn−1
i=1 Wo, where she has a winning strategy by Lemma 4.29.

If Right plays on any other vertex, the game beomes either equivalent to ∅
modulo E , where Left has a winning strategy if she plays �rst, or, if n = 2,
B+WBoo, where Left an play on the non-reserved non-leaf vertex, leaving

a game equivalent to W modulo E , where she has a winning strategy.

Hene, Left has a winning strategy on WSion. �

Now we sum these positions with paths and �nd the outome of suh

sums, as they appear in the strategy we propose.

Lemma 4.36 For any integer n greater than or equal to 2 and any non-

negative integer k, we have (Wok +WSion) ∈ L−
, that is Left has a winning

strategy.

Proof. If Left is the �rst player, she an play on the entral vertex, leav-

ing the game as W +Wok +Σn
i=1Wo, where she has a winning strategy by

Lemma 4.29.

Assume now Right is the �rst player. If Right plays on the non-reserved

leaf on Wok, the game beomes equivalent to WSion modulo E , where Left

has a winning strategy by Lemma 4.35. If Right plays on any other ver-

tex of Wok, Left an answer on that leaf, leaving a game equivalent to

WSion modulo E , where she has a winning strategy by Lemma 4.35. If

Right plays on the reserved vertex of WSion, the game beomes equivalent

to Wok modulo E , where Left has a winning strategy if she plays �rst by

Lemma 4.29. If Right plays on the entral vertex ofWSion, the game beomes

Wok +Σn
i=1Bo >

−
E Wok, where Left has a winning strategy if she plays �rst

by Lemma 4.29. If Right plays on any non-reserved leaf of WSion, Left an
answer on the entral vertex, leaving the game as W + Wok + Σn−1

i=1 Wo,
where she has a winning strategy by Lemma 4.29. If Right plays on any

other vertex, the game beomes either equivalent to Wok modulo E , where
Left has a winning strategy if she plays �rst by Lemma 4.29, or, if n = 2,
Wok +B+WBoo, where Left an play on the non-reserved non-leaf vertex,

leaving a game equivalent to W +Wok modulo E , where she has a winning

strategy by Lemma 4.29.

Hene, Left has a winning strategy on (Wok +WSion). �

We now state the theorem on the outome of any grey subdivided star:

all these positions are misère N -positions.

Theorem 4.37 The �rst player has a winning strategy on any tree with

exatly one vertex having degree at least three, with all verties being oloured

grey.

Proof. We all v the vertex having degree l > 3, vi (1 6 i 6 l) the leaves

of the tree, ni (1 6 i 6 l) the distane between v and vi. Without loss of

generality, we an assume that Left is the �rst player.
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If at least one of the ni's is equal to 1, Left an play on v, leaving the graph

as Σl
i=1Woni−1

where she has a winning strategy by Lemma 4.29. Assume

suh ni does not exist. If at least two of the ni's are greater than or equal

to 3, Left an play on v, leaving the graph as Σl
i=1Woni−1

where she has a

winning strategy by Lemma 4.32. If all ni's are equal to 2, Left an play on

a leaf, leaving the graph as WSiol−1, where she has a winning strategy by

Lemma 4.35. If all but one ni are equal to 2, Left an play on the non-leaf

vertex at distane 2 from v, leaving the graph as Womax16i6l(ni−3)+WSiol−1,

where she has a winning strategy by Lemma 4.36.

Hene, the �rst player has a winning strategy on any tree with exatly one

vertex having degree at least three. �

4.2 Canonial form of diot games

We now look at a more general universe of games, namely the universe of

diot games. Reall that a game is said to be diot either if it is {·|·} or if it

has both Left and Right options and all these options are diot.

Example 4.38 Figure 4.8 gives three examples of games that are diot. The

�rst game has both a Left option and a Right option, and both these options

are 0, so are diot. One may reognise the game ∗ = {0|0} introdued in the

introdution. The seond game has two Left options and a Right option, and

all these options are 0 or ∗, so are diot. The third game has a Left option

and two Right options, and we an see all these options are diot. Figure 4.9

gives three examples of games that are not diot. The �rst game has a Left

option but no Right option. The seond game has both a Left option and a

Right option, but, though the Right option is diot, the Left option is not

diot as it has a Right option but no Left option. The third game has both

a Left option and a Right option, but none of these options is diot as they

are numbers in normal anonial form.

The universe of diots ontains all impartial games as well as many par-

tizan games suh as all Clobber positions.

In normal play, diot games are alled all-small, beause if a player has

a signi�ant advantage in a game, adding any diot position annot prevent

them from winning. In misère play, this is not the ase, as Siegel proved in

[38℄ that for any game G, there exists a diot game G′
suh that G + G′

is

a misère P-position.

In this setion, we de�ne a redued form for diot games, prove that it is

atually a anonial form, and ount the number of diot games in anonial

form born by day 3.
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Figure 4.8: Some diot positions

Figure 4.9: Some positions that are not diot

4.2.1 De�nitions and universal properties

We start by giving some more de�nitions and stating results valid for any

universe, but before that, we prove the losure of the diot universe under the

three aspets we mentioned in the introdution of this hapter: it is losed

under followers, losed under disjuntive sum, and losed under onjugates.

Lemma 4.39 If G is diot then every follower of G is diot.

Proof. We prove the result by indution on the birthday of G. If G = 0, G
is its only follower, and is diot, so the result holds. Let H be a follower of

G. If H is G or an option of G, then it follows from the de�nition of diots.

Otherwise, H is a follower of an option G′
of G, and as G′

is diot with a

birthday smaller than the birthday of G, it follows by indution. �

Lemma 4.40 If G and H are diot then G+H is diot.

Proof. We prove the result by indution on the birthdays of G and H. If

G = H = 0, then G + H = 0 is diot. Otherwise, we an assume without

loss of generality that G 6= 0. Then, from the de�nition of diot, we �nd Left

options of G+H, namely GL +H and possibly G+HL
. Similarly, we �nd

Right options of G + H, namely GR + H and possibly G + HR
. All these

options are diot by indution. Hene G+H is diot. �

Lemma 4.41 If G is diot, then G is diot.

Proof. We prove the result by indution on the birthday of G. If G = 0,
then G = 0 is diot. Otherwise, we �nd Left options of G, namely GR

.
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Similarly, we �nd Right options of G, namely GL
. All these options are

diot by indution. Hene G is diot. �

In [38℄, Siegel introdued the notion of the adjoint of a game. Reall that

a Left end is a game with no Left option, and a Right end is a game with no

Right option.

De�nition 4.42 (Siegel [38℄) The adjoint of G, denoted Go
, is given by

Go =





∗ if G = 0 ,

{(GR)o|0} if G 6= 0 and G is a Left end,

{0|(GL)o} if G 6= 0 and G is a Right end,

{(GR)o|(GL)o} otherwise.

where (GR)o denotes the set of adjoints of elements of GR
.

Observe that we an reursively verify that the adjoint of any game is

diot. In normal play, the onjugate of a game is onsidered as its opposite

and is thus denoted −G, sine G+G ≡+ 0. The interest of the adjoint of a
game is that it plays a similar role as the opposite of a game in normal play,

to fore a win for the seond player reursively, as the following proposition

suggests:

Proposition 4.43 (Siegel [38℄) For any game G, G + Go
is a misère P-

position.

The following proposition was stated in [38℄ for the universe G of all

games. Mimiking the proof, we extend it to any universe.

Proposition 4.44 Let U be a universe of games, G and H two games (not

neessarily in U). We have G >
−
U H if and only if the following two ondi-

tions hold:

(i) For all X ∈ U with o−(H +X) > P, we have o−(G+X) > P; and

(ii) For all X ∈ U with o−(H +X) > N , we have o−(G+X) > N .

Proof. The su�ieny follows from the de�nition of >. For the onverse,

we must show that o−(G+X) > o−(H +X) for all X ∈ U . Sine we always
have o−(G+X) > R, if o−(H +X) = R, then there is nothing to prove. If

o−(H+X) = P or N , the result diretly follows from (i) or (ii), respetively.
Finally, if o−(H+X) = L, then by (i) and (ii) we have both o−(G+X) > P
and o−(G+X) > N , hene o−(G+X) = L. �

To obtain the anonial form of a game, we generally remove or bypass

options that are not relevant. These options are of two types: dominated

options an be removed beause another option is always a better move
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for the player, and reversible options are bypassed sine the answer of the

opponent is `preditable'. Under normal play, simply removing dominated

options and bypassing reversible options is su�ient to obtain a anonial

form. Under misère play, Mesdal and Ottaway [25℄ proposed de�nitions of

dominated and reversible options under misère play in the universe G of all

games, proving that deleting dominated options and bypassing reversible

options does not hange the equivalene lass of a game in general misère

play, then Siegel [38℄ proved that applying these operations atually de�nes a

anonial form in the universe G. Hene the same method may be applied to

obtain a misère anonial form. However, modulo smaller universes, games

with di�erent anonial forms may be equivalent. In the following, we adapt

the de�nition of dominated and reversible options to restrited universes

of games. We show in the next subsetion that a anonial form modulo

the universe of diots an be obtained by removing dominated options and

applying a slightly more ompliated treatment to reversible options.

De�nition 4.45 (U-dominated and reversible options)

Let G be a game, U a universe of games.

(a) A Left option GL
is U -dominated by some other Left option GL′

if

GL′

>
−
U GL

.

(b) A Right option GR
is U -dominated by some other Right option GR′

if

GR′

6
−
U GR

.

() A Left option GL
is U -reversible through some Right option GLR

if

GLR 6
−
U G.

(d) A Right option GR
is U -reversible through some Left option GRL

if

GRL >
−
U G.

To obtain the known anonial forms for the universe G of all games [38℄

but also for the universe I of impartial games [10℄, one may just remove dom-

inated and bypass reversible options as de�ned. The natural question that

arises is whether a similar proess gives anonial forms in other universes.

Indeed, it is remarkable that in all universes losed by followers, dominated

options an be ignored, as shown by the following lemma.

Lemma 4.46 Let G be a game and let U be a universe of games losed by

taking option of games. Suppose GL1
is U-dominated by GL2

, and let G′
be

the game obtained by removing GL1
from GL

. Then G ≡−
U G′

.

Proof. By Proposition 4.4, we have G′ 6
−
U G. We thus only have to show

that G′ >
−
U G. For a game X ∈ U , suppose Left an win G + X playing

�rst (respetively seond), we show that she also has a winning strategy in

G′+X. Atually, she an simply follow the same strategy on G′+X, unless

she is eventually supposed to make a move from some G + Y to GL1 + Y .

In that ase, she is supposed to move to the game GL1 + Y and then win,
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so o−(GL1 + Y ) > P. But GL2 >
−
U GL1

and Y ∈ U , thus o−(GL2 + Y ) > P.
Therefore, Left an win by moving from G′ + Y to GL2 + Y , onluding the

proof. �

Note that in the ase that interest us here, that is when G is diot, the

obtained game G′
stays diot.

Unfortunately, the ase involving reversible options is more omplex.

Nevertheless, we show in the next subsetion how we an deal with them

in the spei� universe of diot games. Beforehand, we adapt the de�nition

of downlinked or uplinked games from [38℄ to restrited universes.

De�nition 4.47 Let G and H be any two games. If there exists some T ∈ U
suh that o−(G + T ) 6 P 6 o−(H + T ), we say that G is U -downlinked to

H (by T ). In that ase, we also say that H is U -uplinked to G by T .

Note that if two games are U -downlinked and U ⊆ U ′
, then these two

games are also U ′
-downlinked. Therefore, the smaller the universe U is, the

less `likely' it is that two games are U -downlinked.

Lemma 4.48 Let G and H be any two games and U be a universe of games.

If G >
−
U H, then G is U-downlinked to no HL

and no GR
is U-downlinked

to H.

Proof. Let T ∈ U be any game suh that o−(G+T ) 6 P. Sine G >
−
U H and

T ∈ U , o−(H +T ) 6 P as well. Hene for any HL ∈ HL
, o−(HL +T ) 6 N ,

and G is not U -downlinked to HL
by T . Similarly, let T ′ ∈ U suh that

o−(H + T ′) > P. Then o−(G + T ′) > P and therefore, for any GR ∈ GR
,

o−(GR + T ′) > N and GR
is not U -downlinked to H by T ′

. �

4.2.2 Canonial form of diot games

In this subsetion, we onsider games within the universe D of diots, and

show that we an de�ne preisely a anonial form in that ontext. In or-

der to do so, we �rst desribe how to bypass the D-reversible options in

Lemmas 4.49 and 4.50.

Lemma 4.49 Let G be a diot game. Suppose GL1
is D-reversible through

GL1R1
and either GL1R1 6= 0 or there exists another Left option GL2

of G
suh that o−(GL2) > P. Let G′

be the game obtained by bypassing GL1
:

G′ = {(GL1R1)L, GL \ {GL1}|GR} .

Then G′
is a diot game and G ≡−

D G′
.

Proof. First observe that sine G is diot, all options of G′
are diot, and

under our assumptions, G′
has both Left and Right options. Thus G′

is a
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diot game. We now prove that for any diot game X, the games G+X and

G′ +X have the same misère outome.

Suppose Left an win playing �rst (respetively seond) onG+X. Among

all the winning strategies for Left, onsider one that always reommends a

move on X, unless the only winning move is on G. In the game G′ +X, let

Left follow the same strategy exept if the strategy reommends preisely

the move from G to GL1
. In that ase, the position is of the form G′ + Y ,

with o−(GL1 + Y ) > P. Thus o−(GL1R1 + Y ) > N .

Suppose Left has a winning move in Y from GL1R1 + Y , i.e. there

exists some Y L
suh that o−(GL1R1 + Y L) > P . But then by reversibil-

ity, o−(G+ Y L) > P, ontraditing our hoie of Left's strategy. So either

Left has a winning move of type GL1R1L + Y , whih she an play diretly

from G′ + Y , or she wins beause she has no possible moves, meaning that

GL1R1 = 0 and Y = 0. In that ase, she an also win in G′ + Y = G′
by

hoosing the winning move to GL2
.

Now suppose Right an win playing �rst (respetively seond) on G+X.

Consider any winning strategy for Right, and let him follow exatly the

same strategy on G′ + X unless Left moves from some position G′ + Y to

GL1R1L + Y . First note that by our assumption, G′
is not a Left end, thus

if Right follows this strategy, Left an never run out of move prematurely.

Suppose now that Left made a move from some position G′ + Y to

GL1R1L + Y . Until that move, Right was following his winning strat-

egy, so o−(G + Y ) 6 P. Sine GL1R1 6
−
D G and Y is a diot, we have

o−(GL1R1 + Y ) 6 P. Thus GL1R1L + Y 6 N and Right an adapt his

strategy. �

With the previous lemma, we do not bypass reversible options through

0 when all other Left options have misère outome at most N . Suh re-

versible options annot be treated similarly, as shows the example of the

game {0, ∗|∗}. Note that as shown in [2℄ and [3℄, {∗|∗} = ∗ + ∗ ≡−
D 0 and

thus, by Proposition 4.4, {0, ∗|∗} >
−
D 0. Therefore, the Left option ∗ is

D-reversible through 0. However, {0, ∗|∗} 6≡−
D {0|∗} sine the �rst is an N -

position and the seond is an R-position. Yet, we prove with the following

lemma that all reversible options ignored by Lemma 4.49 an be replaed by

∗ without hanging the equivalene lass of the game.

Lemma 4.50 Let G be a diot game. Suppose GL1
is D-reversible through

GL1R1 = 0. Let G′
be the game obtained by replaing GL1

by ∗:

G′ = {∗, GL \ {GL1}|GR} .

Then G′
is a diot game and G ≡−

D G′
.

Proof. First observe that sine G and ∗ are diots, all options of G′
are

diots, and G′
has both Left and Right options. Thus G′

is a diot game.
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We now prove that for any diot game X, the games G+X and G′+X have

the same misère outome.

Suppose Left an win playing �rst (respetively seond) onG+X. Among

all the winning strategies for Left, onsider one that always reommends a

move on X, unless the only winning move is on G. In the game G′ +X, let

Left follow the same strategy exept if the strategy reommends preisely

the move from G to GL1
. In that ase, the position is of the form G′ + Y ,

with o−(GL1 + Y ) > P. Thus o−(GL1R1 + Y ) > N .

Suppose Left has a winning move in GL1R1 + Y = 0 + Y = Y , i.e.

there exists some Y L
suh that o−(Y L) > P. But then by reversibility,

o−(G + Y L) > P, ontraditing our hoie of Left's strategy. So Left has

no winning move in Y , and she wins beause she has no possible moves, i.e.

Y = 0. In that ase, she an also win in G′+Y = G′
by hoosing the winning

move to ∗.
Now suppose Right an win playing �rst (respetively seond) on G+X.

Consider any winning strategy for Right, and let him follow exatly the same

strategy on G′ +X unless Left moves from some position G′ + Y to ∗+ Y .

First note that by our assumption, G′
is not a Left end, thus if Right follows

this strategy, Left an never run out of move prematurely.

Suppose now that Left made a move from some position G′ + Y to

∗ + Y . Until that move, Right was following his winning strategy, so

o−(G + Y ) 6 P. Sine 0 = GL1R1 6
−
D G and Y is diot, we have

o−(Y ) = o−(0 + Y ) 6 o−(G+ Y ) 6 P . So Right an move from ∗ + Y to

Y and win. �

Note that some reversible options may be dealt with using both Lem-

mas 4.49 and 4.50. Yet, it is still possible to apply Lemma 4.49 and remove

suh an option after having applied Lemma 4.50.

At this point, we want to de�ne a redued form for eah game obtained

by applying the preeding lemmas as long as we an. In addition, it was

proved by Allen in [2℄ and [3℄ that the game {∗|∗} is equivalent to 0 modulo

the universe of diot games, and we thus redue this game to 0. Therefore,
we de�ne the redued form of a diot game as follows:

De�nition 4.51 (Redued form) Let G be a diot. We say G is in re-

dued form if:

(i) it is not {∗|∗},

(ii) it ontains no dominated option,

(iii) if Left has a reversible option, it is ∗ and no other Left option has

outome P or L,

(iv) if Right has a reversible option, it is ∗ and no other Right option has

outome P or R,

(v) all its options are in redued form.
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Observe �rst the following:

Theorem 4.52 Every game G is equivalent modulo the universe of diots

to a game in redued form H whose birthday is no larger than the birthday

of G.

Proof. To obtain a game H equivalent to G in redued form, we an apply

iteratively Lemmas 4.46, 4.49 and 4.50. Applying these lemmas, we never

inrease the depth of the orresponding game tree, thus the birthday of the

redued game H is no larger than the birthday of G. �

We now prove that the redued form of a game an be seen as a anonial

form. Before stating the main theorem, we need the two following lemmas.

Lemma 4.53 Let G and H be any games. If G �−
D H, then:

(a) There exists some Y ∈ D suh that o−(G+Y ) 6 P and o−(H+Y ) > N ;

and

(b) There exists some Z ∈ D suh that o−(G+Z) 6 N and o−(H+Z) > P.

Proof. Negating the ondition of Proposition 4.44, we get that (a) or (b)

must hold. To prove the lemma, we show that (a) ⇒ (b) and (b) ⇒ (a).

Consider some Y ∈ D suh that o−(G + Y ) 6 P and o−(H + Y ) > N ,

and set

Z = {(HR)o, 0|Y } .

First note that sine Z has both a Left and a Right option, and all its options

are diots, Z is also diot. We now show that Z satis�es o−(G + Z) 6 N
and o−(H +Z) > P, as required in (b). From the game G+Z, Right has a
winning move to G+Y , so o−(G+Z) 6 N . We now prove that Right has no

winning move in the game H+Z. Observe �rst that H+Z is not a Right end

sine Z is not. If Right moves to some HR +Z, Left has a winning response

to HR+(HR)o. If instead Right moves to H+Y then, sine o−(H+Y ) > N ,

Left an win. Therefore o−(H + Z) > P, and (a) ⇒ (b).

To prove (b) ⇒ (a), for a given Z we set Y = {Z|0, (GL)o} and prove

similarly that Left wins if she plays �rst on H+Y and loses if she plays �rst

on G+ Y . �

Lemma 4.54 Let G and H be any games. The game G is D-downlinked to

H if and only if no GL >
−
D H and no HR 6

−
D G.

Proof. Consider two games G and H suh that G is D-downlinked to H
by some third game T , i.e. o−(G + T ) 6 P 6 o−(H + T ). Then Left

has no winning move from G + T , thus o−(GL + T ) 6 N and similarly

o−(HR + T ) > N . Therefore, T witnesses both GL �−
D H and G �−

D HR
.

Conversely, suppose that no GL >
−
D H and no HR 6

−
D G. Set

GL = {GL
1 , . . . , G

L
k } and HR = {HR

1 , . . . ,H
R
ℓ }. By Lemma 4.53, we an
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assoiate to eah GL
i ∈ GL

a game Xi ∈ D suh that o−(GL
i +Xi) 6 P and

o−(H +Xi) > N . Likewise, to eah HR
j ∈ HR

, we assoiate a game Yj ∈ D

suh that o−(G+Yj) 6 N and o−(HR
j +Yj) > P. Let T be the game de�ned

by

TL =

{
{0}
(GR)o ∪ {Yj | 1 6 j 6 ℓ}

if both G and H are Right ends,

otherwise.

TR =

{
{0}
(HL)o ∪ {Xi | 1 6 i 6 k}

if both G and H are Left ends,

otherwise.

If HR
(respetively GR

) is non-empty, then so is {Yj | 1 6 j 6 ℓ}
(respetively (GR)o), and T has a Left option. If both GR

and HR
are

empty, then TL = {0}, so T always has a Left option. Similarly, T also

always has a Right option. Moreover, all these options are diots, so T is

diot. We laim that G is D-downlinked to H by T .
To show that o−(G + T ) 6 P, we just prove that Left loses if she plays

�rst in G+T . Sine T has a Left option, G+T is not a Left end. If Left moves

to some GL
i + T , then by our hoie of Xi, Right has a winning response

to GL
i +Xi. If Left moves to some G + (GR)o, then Right an respond to

GR+(GR)o and win (by Proposition 4.43). If Left moves to G+Yj, then by

our hoie of Yj , o
−(G + Yj) 6 N and Right an win. The only remaining

possibility is, when G and H are Right ends, that Left moves to G+0. But
then Right annot move and wins.

Now, we show that o−(H + T ) > P by proving that Right loses playing

�rst in H + T . If Right moves to some HR
j + T , then Left has a winning

response to HR
j +Yj . If Right moves to H+(HL)o, then Left wins by playing

to HL + (HL)o, and if Right moves to H + Xi, then by our hoie of Xi,

o−(H +Xi) > N and Left an win. Finally, the only remaining possibility,

when G and H are Left ends, is that Right moves to 0. But then Left annot

answer and wins. �

We now prove the main theorem of the setion.

Theorem 4.55 Consider two diot games G and H. If G ≡−
D H and both

are in redued form, then G = H.

Proof. If G = H = 0, the result is lear. We proeed by indution on the

birthdays of the games. Assume without loss of generality that G has an

option. Sine G is diot, it has both a Left and a Right option.

Consider a Left option GL
. Suppose �rst that GL

is not D-reversible.

Sine H ≡−
D G, H >

−
D G and Lemma 4.48 implies that H is not downlinked

to GL
. Then by Lemma 4.54, either there exists some HL >

−
D GL

, or there

exists some Right option GLR
of GL

with GLR 6
−
D H. The latter would

imply that G >
−
D GLR

and thus that GL
is D-reversible, ontraditing our

assumption. So we must have some option HL
suh that HL >

−
D GL

. A
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similar argument for HL
gives that there exists some Left option GL′

of G
suh that GL′

>
−
D HL

. Therefore GL′

>
−
D HL >

−
D GL

. If GL′

and GL
are two

di�erent options, thenGL
is dominated byGL′

, ontraditing our assumption

that G is in redued form. Thus, GL′

and GL
are the same option, and

GL ≡−
D HL

. ButGL
andHL

are in redued form, so by indution hypothesis,

GL = HL
. The same argument applied to the Right options of G and to

the options of H shows the pairwise orrespondene of all non-D-reversible

options of G and H.

Assume now that GL
is a D-reversible option. Then GL = ∗ and for all

other Left options GL′

, we have o−(GL′

) 6 N , and by reversibility, there

exists some Right option GLR
of GL

suh that GLR 6
−
D G. Sine the only

Right option of ∗ is 0, G >
−
D 0. Thus H >

−
D 0, so either H = 0 or Left has a

winning move in H, namely a Left option HL
suh that o−(HL) > P. First

assume H = 0. Then by the pairwise orrespondene proved earlier, G has

no non-D-reversible options. Yet it is a diot and must have both a Left and

a Right option, and sine it is in redued form, both are ∗. Then G = {∗|∗}, a
ontradition. Now assume H has a Left option HL

suh that o−(HL) > P.
IfHL

is not D-reversible, then it is in orrespondene with a non-D-reversible

option GL′

, but then we should have o−(HL) = o−(GL′

) 6 N , a ontradi-

tion. So HL
is D-reversible, and HL = GL = ∗. The same argument applied

to possible Right D-reversible options onludes the proofs that G = H. �

This proves that the redued form of a game is unique, and that any two

D-equivalent games have the same redued form. Therefore, the redued

form as desribed in De�nition 4.51 an be onsidered as the anonial form

of the game modulo the universe of diot games.

Siegel showed in [38℄ that for any games G and H, if G >− H, then

G >+ H also in normal play. This result an be strengthened as follows :

Theorem 4.56 Let G and H be any games. If G >
−
D H, then G >+ H.

Proof. Consider any two games G and H suh that G >
−
D H. We show that

G+H >+ 0, i.e. that Left an win G+H in normal play when Right moves

�rst [4℄, by indution on the birthdays of G and H. Suppose Right plays to

some GR +H. Sine G >
−
D H, Lemma 4.48 implies GR

is not D-downlinked

to H. By Lemma 4.54, either there exists some Left option GRL
of GR

with

GRL >
−
D H, or there exists some Right option HR

of H with GR >
−
D HR

.

In the �rst ase, we get by indution that GRL >+ H and Left an win

by moving to GRL + H. In the seond ase, we get GR >+ HR
, and Left

an win by moving to GR +HR
. The argument when Right plays to some

G+HL
is similar. �

Theorem 4.56 implies in partiular that if two games are equivalent in

misère play modulo D, then they are also equivalent in normal play. It allows

us to use any normal play tools to prove inomparability or distinguishability
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0 ∗ α α s s

z z ∗2

Figure 4.10: Game trees of the 9 diot games born by day 2

(i.e. non equivalene) to dedue it modulo the universe of diot games.

Moreover, a orollary of Theorem 4.56 is that its statement is also true for

any universe ontaining D, in partiular for the universe G of all games

(implying the result of [38℄) and for the universe E of dead-ending games we

study in the next setion.

Corollary 4.57 Let G and H be any games, U a universe ontaining all

diot positions. If G >
−
U H, then G >+ H.

4.2.3 Diot misère games born by day 3

We now use Theorem 4.55 to ount the diot misère games born by day 3.
Reall that the numbers of impartial misère games distinguishable modulo

the universe I of impartial games that are born by day 0, 1, 2, 3 and 4 are

respetively 1, 2, 3, 5 and 22 (see [10℄). Siegel [38℄ proved that the numbers

of misère games distinguishable modulo the universe G of all games that are

born by day 0, 1 and 2 are respetively 1, 4 and 256, while the number of

distinguishable misère games born by day 3 is less than 2183. Notie that

sine impartial games form a subset of diot games, the number of diot

games born by day 3 lies between 5 and 2183. Before showing that this

number is exatly 1268, we state some properties of the diot games born by

day 2.

Proposition 4.58 There are 9 diot games born by day 2 distinguishable

modulo the universe D of diot games, namely 0, ∗, α = {0|∗}, α = {∗|0},
s = {0, ∗|0}, z = {0, ∗|∗}, s = {0|0, ∗}, z = {∗|0, ∗}, and ∗2 = {0, ∗|0, ∗} (see

Figure 4.10). They are partially ordered aording to Figure 4.11. Moreover,

the outomes of their sums are given in Table 4.12.
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s z

∗ α
∗2

α 0

s z
Figure 4.11: Partial ordering of diot games born by day 2

0 ∗ α α s z s z ∗2

0 N P R L L N R N N
∗ P N N N N L N R N
α R N P N N P R R R
α L N N P L L N P L
s L N N L L L N P L

z N L P L L L P N L
s R N R N N P R R R
z N R R P P N R R R
∗2 N N R L L L R R P

Table 4.12: Outomes of sums of diots born by day 2

Proof. There are 10 diot games born by day 2, of whih 0 and {∗|∗} are

equivalent. We now prove that these nine games are pairwise distinguishable

modulo the universe D of diot games

1

. First note that these games are all

in redued form. Indeed, sine all options are either 0 or ∗ whih are not

omparable modulo D, there are no dominated options. Moreover, ∗ might

be reversible through 0, but sine there are no other option at least P, it
annot be redued. Thus, by Theorem 4.55, these games are pairwise non-

equivalent.

The proof of the outomes of sums of these games (given in Table 4.12)

is tedious but not di�ult, and omitted here.

We now show that these games are partially ordered aording to Fig-

ure 4.11. Using the fat that {∗|∗} ≡−
D 0 and Proposition 4.4, we easily

infer the relations orresponding to edges in Figure 4.11. All other pairs are

inomparable: for eah pair (X,Y ), there exist Z1, Z2 ∈ {0, ∗, α, α, s, s, z, z}
suh that o−(X + Z1) 66 o−(Y + Z1) and o−(X + Z2) 6> o−(Y + Z2) (see
Table 4.13 for expliit suh Z1 and Z2). �

1

Milley gave an alternate proof of this fat in [26℄.
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X Y
Z1 suh that

o−(X + Z1) 66 o−(Y + Z1)
Z2 suh that

o−(X + Z2) 6> o−(Y + Z2)

s z s s
s α α α
s 0 z z
z ∗ 0 0
z α α α
∗ α α α
∗ 0 0 0
∗ ∗2 0 0
α ∗2 0 α
α 0 ∗ ∗
α α α α
∗2 0 ∗ ∗

Table 4.13: Inomparability of diots born by day 2

We now start ounting the diot games born by day 3. Their Left and

Right options are neessarily diot games born by day 2. We an onsider

only games in their anonial form, so with no D-dominated options.

Using Figure 4.11, we �nd the following 50 antihains:





all 32 subsets of {0, ∗, α, α, ∗2},
{s, z} and {s, z},
4 ontaining s and any subset of {0, α}
4 ontaining z and any subset of {∗, α}
4 ontaining s and any subset of {0, α}
4 ontaining z and any subset of {∗, α}

Therefore, hoosing GL
and GR

among these antihains, together with

the fat that G is diot, we get 492 + 1 = 2402 diot games born by day 3
with no D-dominated options.

To get only games in anonial form, we still have to remove games with

D-reversible options. Note that an option from a diot game born by day 3
an only be D-reversible through 0 or ∗ sine these are the only diot games

born by day 1. To deal with D-reversible options, we onsider separately the

games with di�erent outomes. If Left has a winning move from a game G,
namely a move to ∗, α or s, or if she has no move from G, then o−(G) > N .

Otherwise, o−(G) 6 P. Likewise, if Right has a winning move from G,
namely a move to ∗, α or s, or if he has no move from G, then o−(G) 6 N .

Otherwise, o−(G) > P. From this observation, we infer the outome of any

diot game born by day 3.
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Consider �rst the games G with outome P, i.e. GL ∩ {∗, α, s} = ∅
and GR ∩ {∗, α, s} = ∅. Sine o−(0) = N , G and 0 are D-inomparable,

so no option of G is D-reversible through 0. The following lemma allows to

haraterise diot games born by day 3 whose outome is P and that ontain

D-reversible options through ∗.

Lemma 4.59 Let G be a diot game born by day 3 with misère outome P.
We have G >

−
D ∗ if and only if GL ∩ {0, z} 6= ∅.

Proof. First suppose that GL∩{0, z} 6= ∅. Let X be a diot game suh that

Left has a winning strategy on ∗+X when playing �rst (respetively seond).

Left an follow the same strategy on G+X, unless the strategy reommends

that she plays from some ∗+Y to 0+Y , or Right eventually plays from some

G+Z to some GR +Z. In the �rst ase, we must have o−(0+Y ) > P. Left
an move from G + Y either to 0 + Y or to z + Y , whih are both winning

moves. Indeed, sine z >
−
D 0, we have o−(z+Y ) > o−(0+Y ) > P. Suppose

now that Right just moved from G + Z to some GR + Z. By our hoie

of strategy, we have o−(∗ + Z) > P. If GR = 0, then Left an ontinue

her strategy sine 0 + Z is also a Right option of ∗ + Z. Otherwise, sine

GR ∩ {∗, α, s} = ∅, GR
is one of α, s, z, z, ∗2 and ∗ is a Left option of GR

.

Then Left an play from GR+Z to ∗+Z and win. Thus, if Left wins ∗+X,

she wins G+X as well and thus G >
−
D ∗.

Suppose now that GL ∩ {0, z} = ∅, that is GL ⊆ {α, s, z, ∗2}. Let

X = {s|0}. In ∗+X, Left wins playing to 0 +X and Right wins playing to

∗+ 0, hene o−(∗ +X) = N . On the other hand, in G+X, Right wins by

playing to G + 0, but Left has no other option than α +X, s +X, z +X,

∗2 +X, G + s. In the last four, Right wins by playing to 0 +X or G + 0,
both with outome P. In α+X, Right wins by playing to α+ 0 whih has

outome R. So o−(G+X) = R, and sine o−(∗+X) = N , we have G �−
D ∗.
�

We dedue the following theorem:

Theorem 4.60 A diot game G born by day 3 with outome P is in anon-

ial form if and only if

{
GL ∈

{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
, and

GR ∈
{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
.

This yields 8 · 8 = 64 diots non equivalent modulo D.

Proof. Let G be a diot game born by day 3 with misère outome

P, in anonial form. By our earlier statement, GL ⊆ {0, α, s, z, z, ∗2}.
By Lemma 4.59, options α, s, z, z, ∗2 are reversible through ∗ whenever

GL ∩ {0, z} 6= ∅. So z is not a Left option of G, and if 0 is, there

are no other Left options. Thus the only antihains left for GL
are
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{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
. A similar argument with

onjugates gives all possibilities for GR
. �

Now we onsider games G with outome L, i.e. GL ∩ {∗, α, s} 6= ∅ and

GR ∩ {∗, α, s} = ∅. Sine G 
 0 and G 
 ∗, no Right option of G is

D-reversible. The two following lemmas allow us to haraterise diot games

born by day 3 whose outome is L and that ontain D-reversible Left options.

First, we haraterise positions that may ontain D-reversible Left options

through ∗.

Lemma 4.61 Let G be a diot game born by day 3 with misère outome L.
We have G >

−
D ∗ if and only if GL ∩ {0, z} 6= ∅.

Proof. The proof that if GL ∩ {0, z} 6= ∅, then Left wins G +X whenever

she wins ∗+X is the same as for Lemma 4.59.

Consider now the ase when GL ∩ {0, z} = ∅, that is

GL ⊆ {∗, α, s, α, s, z, ∗2}. Assume �rst that {0, z} ∩ GR 6= ∅ and let

X = {s|0}. Reall that in ∗+X, Left wins playing to 0+X and Right wins

playing to ∗+0, hene o−(∗+X) = N . On the other hand, in G+X, Left has

no other option than α+X, ∗+X,α+X, s+X, s+X, z+X, ∗2+X,G+s. In
α+X, Right wins by playing to α+0, whose outome is R. In G+s, by our

assumption, Right an play either to 0 + s or to z + s, with outome R and

P respetively, and thus wins. In all other ases, Right wins by playing to

0+X, whose outome is P. Thus o−(G+X) 6 P, and sine o−(∗+X) = N ,

we have G �−
D ∗.

Now assume {0, z}∩GR = ∅, that is GR ⊆ {α, s, z, ∗2}. Let X ′ = {z|0}.
In ∗ + X ′

, Left wins playing to 0 + X ′
and Right wins playing to ∗ + 0,

hene o−(∗ + X ′) = N . On the other hand, in G + X ′
, Left has no other

option than G + z, α + X ′, ∗ + X ′, α + X ′, s + X ′, s + X ′, z + X ′, ∗2 + X ′
.

In α +X ′
, Right wins by playing to α + 0 whose outome is R. In G + z,

Right wins by playing either to α+ z or s + z, both with outome P, or to
z + z or ∗2 + z, both with outome R. In the remaining ases, Right wins

by playing to 0 +X ′
whose outome is P. Thus o−(G+X ′) 6 P, and sine

o−(∗+X ′) = N , we have G �−
D ∗. �

Now, we haraterise games that may ontain D-reversible Left options

through 0. The following lemma an atually be proved for both games with

outome L or N , and we also use it for the proof of Theorem 4.64.

Lemma 4.62 Let G be a diot game born by day 3 with misère outome L
or N . We have G >

−
D 0 if and only if GR ∩ {0, α, z} = ∅.

Proof. Suppose �rst that GR ∩ {0, α, z} = ∅. Then every Right option of

G has 0 as a Left option. Let X be a diot suh that Left has a winning

strategy on 0 +X when playing �rst (respetively seond). Left an follow

the same strategy on G + X until either Right plays on G or she has to
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move from G+ 0. In the �rst ase, she an answer in GR + Y to 0 + Y and

ontinue her winning strategy. In the seond ase, she wins in G + 0 sine

o−(G) > N . Therefore, G >
−
D 0.

Consider now the ase when GR ∩ {0, α, z} 6= ∅. Let X = {α|0}, note
that o−(X) = P. When playing �rst on G+X, Right wins by playing either

to 0 + X with outome P, or to α + X or z + X, both with outome R.

Hene o−(G+X) 6 N so G �−
D 0. �

We now are in position to state the set of diots born by day 3 with

outome L in anonial form. Given two sets of sets A and B, we use the

notation A ⊎B to denote the set {a ∪ b|a ∈ A, b ∈ B}.

Theorem 4.63 A diot game G born by day 3 with outome L is in anon-

ial form if and only if either





GL ∈
({

{∗}, {α}, {∗, α}
}
⊎
{
∅, {0}, {α}, {∗2}, {α, ∗2}

})

∪
{
{s}, {α, s}, {α, s}, {∗, z}, {s, 0}, {∗, α, z}

}
, and

GR ∈
{
{0}, {α}, {0, α}, {0, ∗2}, {α, ∗2}, {0, α, ∗2}, {z}, {α, z}, {0, s}

}
,

or {
GL ∈

{
{∗}, {∗, 0}, {∗, α}

}
, and

GR ∈
{
{∗2}, {s}, {z}, {s, z}

}
.

This yields 21 · 9 + 3 · 4 = 201 diots non equivalent modulo D.

Proof. Let G be a diot game born by day 3 with outome L, in anonial

form. By our earlier statement, GL ∩{∗, α, s} 6= ∅. By Lemma 4.61, options

α, s, z, z, ∗2 are reversible Left options through ∗ whenever GL ∩ {0, z} 6= ∅.
Thus, we have 21 of the 50 antihains remaining for GL

, namely:





15 ontaining {∗}, {α} or {∗, α} together with {0} or any subset of {α, ∗2}
{s}, {s, 0} and {s, α},
{s, α}
{z, ∗} and {z, ∗, α}

Now, by Lemma 4.62, options ∗, α, s, s, z, and ∗2 are reversible through

0 whenever GR ∩ {0, α, z} = ∅. By Lemma 4.50, these options should

then be replaed by ∗. Thus the only antihains remaining for GL
when

GR ∩ {0, α, z} = ∅ are {∗}, {∗, 0} and {∗, α}.
Consider now Right options. By our earlier statement,

GR ⊆ {0, α, s, z, z, ∗2}, and no Right option is reversible. Interseting

{0, α, z}, we have the antihains: {0}, {α}, {0, α}, {0, ∗2}, {α, ∗2},
{0, α, ∗2}, {z}, {α, z} and {0, s}. Non interseting {0, α, z}, we have {∗2},
{s}, {z} and {s, z}. Combining these sets, we get the theorem. �

The diot games born by day 3 with outome R in anonial form are

exatly the onjugates of those with outome L.
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Now onsider diot games with outome N . By our earlier statement,

we have GL ∩ {∗, α, s} 6= ∅ and GR ∩ {∗, α, s} 6= ∅. Note that G and ∗ are

D-inomparable sine o−(∗) = P. Therefore no option of G is D-reversible

through ∗. Reall also that by Lemma 4.62, we an reognise diot games

born by day 3 whose outome isN and that may ontain D-reversible options

through 0.

Theorem 4.64 A diot game G born by day 3 with outome N is in anon-

ial form if and only if either G = 0 or

or





GL ∈
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{s}, {α, s}, {∗, z}

}
, and

GR ∈
{
{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}

}
,

or





GL ∈
{
{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}

}
, and

GR ∈
{
{∗}, {z}, {∗, z}, {∗, ∗2}, {z, ∗2}, {∗, z, ∗2}

}

∪
{
{s}, {α, s}, {∗, z}

}
,

or





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{0}, {α}, {0, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, 0}, {s, α}, {s, α, 0}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, 0}, {∗, z, α}

}
, and

GR ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{0}, {α}, {0, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, 0}, {s, α}, {s, α, 0}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, 0}, {∗, z, α}

}
.

This yields 1 + 9 · 4 + 4 · 9 + 27 · 27 = 802 diots non equivalent modulo D.

Proof. Reall that by Lemma 4.62, if GR ∩ {0, α, z} = ∅, then Left options

∗, α, s, s, z, ∗2 are reversible through 0 and get replaed by ∗. Similarly, if

GL ∩ {0, α, z} = ∅, then Right options ∗, α, s, s, z, ∗2 are reversible through

0 and get replaed by ∗.

Consider �rst the ase when GR ∩ {0, α, z} = ∅ and GL ∩ {0, α, z} = ∅.
Then GL ∩ {α, s, s, z, ∗2} = ∅ and GR ∩ {α, s, s, z, ∗2} = ∅. So G = 0 or

{∗|∗} whih redues to 0.

Now, suppose GR ∩ {0, α, z} 6= ∅ but GL ∩ {0, α, z} = ∅. Then

GR ∩ {α, s, s, z, ∗2} = ∅. Reall that sine o−(G) = N , GR ∩ {∗, α, s} 6= ∅.
So GR ∈ {{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}}. On the other hand, GL

an be any

antihain ontaining one of {∗, α, s} and possibly some of {s, z, ∗2}. Thus

GL ∈ {{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}, {s}, {α, s}, {∗, z}}. When

GL∩{0, α, z} 6= ∅ and GR∩{0, α, z} = ∅, we get GL
and GR

by onjugating

the previous GR
and GL

respetively.

Finally, when GR ∩ {0, α, z} 6= ∅ and GL ∩ {0, α, z} 6= ∅, no option is

reversible. Therefore, the antihains for GR
are those ontaining at least one
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s z

∗ α
∗2

α
∗+ ∗

s z

0

Figure 4.14: Partial ordering of diot games born by day 2 in the general universe

of {0, α, z} and one of {∗, α, s}. There are 27 of them, namely:





18 ontaining some subset of {∗, α}, some subset of {0, α} and possibly {∗2}
{s, z}
{0, s}, {α, s} and {0, α, s},
{∗, z}, {α, z} and {∗, α, z},
{0, α, s}
{∗, α, z}

The antihains for GL
are the onjugates of the antihains for GR

. �

Adding the number of games with outome P, L, R, and N , we get:

Theorem 4.65 There are 1268 diots born by day 3 non equivalent modulo D.

4.2.3.1 Diot games born by day 3 in the general universe

Comparing the number of diot games born by day 3 in anonial form to

the number of games born by day 3 in anonial form is not that relevant,

as there are only 1046530 game trees of depth 3 representing diot games,

whih is far from the 21024 game trees representing all games born by day 3,
or even the (slightly less than) 2183 with no dominated option. This is why

we ount the number of diot games born by day 3 in their general anonial

form modulo the universe of all games.

Reall that a game is in anonial form if and only if all its options are

in anonial form and it has no dominated option nor reversible option.

We �rst reall a result from [38℄.

Theorem 4.66 If H is a Left end and G is not, then G �− H.

This gives us the following orollary, when we only onsider diot games.

Corollary 4.67 If G is a diot game whih is not 0, then G and 0 are

inomparable.
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Proposition 4.68 There are 10 diot games born by day 2 distinguishable

modulo the universe of all games, namely 0, ∗, ∗ + ∗ = {∗|∗} α = {0|∗},
α = {∗|0}, s = {0, ∗|0}, z = {0, ∗|∗}, s = {0|0, ∗}, z = {∗|0, ∗}, and

∗2 = {0, ∗|0, ∗}. They are partially ordered aording to Figure 4.14.

Proof. The proof is similar to the proof of Proposition 4.58. �

We now start ounting the diot games born by day 3. Their Left and

Right options are neessarily diot games born by day 2. We an onsider

only games in their anonial form, so with no dominated option.

Using Figure 4.14, we �nd the following 100 antihains:





all 64 subsets of {0, ∗ + ∗, ∗, α, α, ∗2},
{s, z}, {0, s, z}, {s, z} and {0, s, z},
8 ontaining s and any subset of {0, ∗ + ∗, α}
8 ontaining z and any subset of {0, ∗, α}
8 ontaining s and any subset of {0, ∗ + ∗, α}
8 ontaining z and any subset of {0, ∗, α}

Therefore, hoosing GL
and GR

among these antihains, together with

the fat that G is diot, we get 992 + 1 = 9802 diot games born by day 3
with no dominated option.

To get only games in anonial form, we still have to remove games with

reversible options. Note that an option from a diot game born by day 3
an only be reversible through 0 or ∗ sine these are the only diot games

born by day 1. As no diot game is omparable with 0, no option an be

reversible through 0. Note that as o−(∗) = P, no game with outome N
may have a reversible option through ∗, and no game with outome R may

have a Left option reversible through ∗. Again, if Left has a winning move

from a game G, namely a move to ∗, α or s, or if she has no move from G,
then o−(G) > N . Otherwise, o−(G) 6 P. Likewise, if Right has a winning

move from G, namely a move to ∗, α or s, or if he has no move from G, then
o−(G) 6 N . Otherwise, o−(G) > P.

We now haraterise diot games having reversible options.

Lemma 4.69 Let G be a diot game born by day 3 with misère outome P
or L. We have G >− ∗ if and only if 0 ∈ GL

.

Proof. First suppose 0 ∈ GL
. Let X be a game suh that Left has a winning

strategy on ∗ +X when playing �rst (respetively seond). Left an follow

the same strategy on G+X, unless the strategy reommends that she plays

from some ∗ + Y to 0 + Y , or Right eventually plays from some G + Z to

some GR + Z. In the �rst ase, she an just play from G + Y to 0 + Y .

Suppose now that Right just moved from G + Z to some GR + Z. By our

hoie of strategy, we have o−(∗+Z) > P. If GR = 0, then Left an ontinue
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her strategy sine 0 + Z is also a Right option of ∗ + Z. Otherwise, sine

GR ∩ {∗, α, s} = ∅, GR
is one of ∗+ ∗, α, s, z, z, ∗2 and ∗ is a Left option of

GR
. Then Left an play from GR + Z to ∗+ Z and win. Thus, if Left wins

∗+X, she wins G+X as well and thus G >− ∗.

Assume now 0 /∈ GL
. Let X = {·|{·|3}}. In ∗+X, Left wins by moving

to X, so o−(∗ +X) > N . On the other hand, in G +X, Left has to move

to some GL + X, where GL
is a non-zero diot. Then Right an move to

GL + {·|3}, where Left has to play in GL
, to GLL + {·|3}, where GLL

is a

diot born by day 1. Right's move to GLL+3 is then a winning move. hene

o−(G+X) 6 P, and we have G �− ∗. �

We now are in position to state the set of diot games born by day 3 in

anonial form (modulo the universe of all games) with any outome.

Theorem 4.70 A diot game G born by day 3 with outome P is in anon-

ial form if and only if





GL ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{0}, {s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}

}

GR ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{0}, {s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}

}

This yields 14 · 14 = 196 non-equivalent diot games.

Theorem 4.71 A diot game G born by day 3 with outome L is in anon-

ial form if and only if





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗ + ∗}, {s, α}, {s, α, ∗+ ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗ + ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, s}

}
, and

GR ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}, {0}, {0, ∗ + ∗}, {0, α}

}

∪
{
{0, ∗2}, {0, ∗ + ∗, α}, {0, ∗ + ∗, ∗2}, {0, α, ∗2}, {0, ∗ + ∗, α, ∗2}

}

∪
{
{0, s, z}, {0, z}, {0, s}, {0, s, ∗ + ∗}, {0, z}, {0, z, α}

}

This yields 40 · 27 = 1080 non-equivalent diot games.

The diot games born by day 3 with outome R in anonial form are

exatly the onjugates of those with outome L.

Theorem 4.72 A diot game G born by day 3 with outome N is in anon-
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ial form if and only if either G = 0 or





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗ + ∗}, {s, α}, {s, α, ∗+ ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗+ ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗ + ∗}, {α}, {∗ + ∗, α}

}
⊎
{
{0}, {0, ∗2}

}

∪
{
{0, s, z}, {0, s, ∗ + ∗}, {0, s, α}, {0, s, α, ∗+ ∗}

}

∪
{
{0, z, ∗}, {0, z, α}, {0, z, α, ∗}

}

∪
{
{0, α, s, ∗+ ∗}, {0, ∗, z, α}, {0, s}, {0, α, s}, {0, ∗, z}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, ∗, ∗2}, {0, α, ∗2}, {0, ∗, α, ∗2}

}

GR ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗+ ∗}, {s, α}, {s, α, ∗ + ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗ + ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗ + ∗}, {α}, {∗ + ∗, α}

}
⊎
{
{0}, {0, ∗2}

}

∪
{
{0, s, z}, {0, s, ∗+ ∗}, {0, s, α}, {0, s, α, ∗ + ∗}

}

∪
{
{0, z, ∗}, {0, z, α}, {0, z, α, ∗}

}

∪
{
{0, α, s, ∗+ ∗}, {0, ∗, z, α}, {0, s}, {0, α, s}, {0, ∗, z}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, ∗, ∗2}, {0, α, ∗2}, {0, ∗, α, ∗2}

}

This yields 72 · 72 + 1 = 5185 non-equivalent diot games.

Adding the numbers of games with outome P, L, R and N , we get:

Theorem 4.73 There are 7541 non-equivalent diot games born by day 3.

4.2.4 Sums of diots an have any outome

In the previous subsetion, we proved that modulo the universe of diots,

there were muh fewer distinguishable diot games under misère onvention.

A natural question that arises is whether in this setting, one ould sometimes

dedue from the outomes of two games the outome of their sum. This

ours in normal onvention in partiular with games with outome P. In

this subsetion, we show that this is not possible with diots. We �rst prove

that the misère outome of a diot is not related to its normal outome.

Theorem 4.74 Let A,B be any outomes in {P,L,R,N}. There exists a

diot G with normal outome o+(G) = A and misère outome o−(G) = B.

Proof. In Figure 4.15, we give for any A,B ∈ {P,L,R,N} a diot G suh

that o+(G) = A and o−(G) = B. �

Theorem 4.75 Let A,B and C be any outomes in {P,L,R,N}. There

exist two diots G1 and G2 suh that o−(G1) = A, o−(G2) = B and

o−(G1 +G2) = C.
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Normal→
Misère ↓

P L R N

P

L

R

N

Figure 4.15: Normal and misère outomes of some diots

Proof. In Figure 4.16, we give for any A,B, C ∈ {P,L,R,N} two games

G1 and G2 suh that o−(G1) = A, o−(G2) = B and o−(G1 +G2) = C. �

4.3 A peek at the dead-ending universe

In many ombinatorial games, players plae piees on a board aording to

some set of rules. Usually, these rules imply that the board spae available

to a player at their turn are a subset of those available on the previous turn.

Among games �tting that desription, we an mention Col, Domineering,

Hex, or Snort. One an also see it as a board where piees are removed,

with rules implying that the set of piees removable is dereasing after eah

turn. Among games �tting that desription, we an mention Hakenbush,

Nim or any otal game, or Timbush. A property all these games share in

ontrast with Partizan Peg Duotaire or Flip the oin is that no player

an `open up' moves for themself or for their opponent; in partiular, a player

who has no available move at some position will not be able to play for the

rest of the game. This is the property we all dead-ending.

We reall the more formal de�nition of dead-ending: A Left (Right) end

is a dead end if every follower is also a Left (Right) end. A game is said to

be dead-ending if all its end followers are dead ends.

Note that diot games, studied in Setion 4.2, are all dead-ending, as the

only end follower of a diot is 0, whih is a dead end.

Example 4.76 Figure 4.17 gives three examples of games that are dead-

ending. The �rst game is a dead end. The seond game is dead-ending as its

end followers are either 0 or 1, whih are both dead ends. The third game is
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P L
R N

P + P:

+ + + +

+ +

P + L:

+

P +N :

L+ L:

+

L+R:

+ +

+

L+N :

N +N :

Figure 4.16: Sums of diots an have any outome
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Figure 4.17: Some dead-ending positions

Figure 4.18: Some positions that are not dead-ending

a diot game, hene a dead-ending game. Figure 4.18 gives three examples

of games that are not dead-ending. The �rst game is a Right end that is not

a dead end as Right an move from one of Left's options. The seond game

is not dead-ending beause its Left option is a Left end that is not a dead

end. The third game is not dead-ending beause both its Left option and its

Right option are ends that are not dead ends.

In the following, we look at numbers under their normal anonial form.

Sine, among other shortomings, 1 ≮−
E 2 or

1

2
+ 1

2
6≡−

E 1 as games, to avoid

onfusion, we distinguish between the game a and the number a. For the

rest of this setion, we use the notation 0 for the game {·|·} too.

In this setion, we �nd the misère monoid of dead ends, the misère monoid

of normal-play anonial form numbers, give their partial order modulo the

dead-ending universe and disuss other dead-ending games, in the ontext

of equivaleny to zero modulo the universe of dead-ending games.

4.3.1 Preliminary results

We start by proving the losure of the dead-ending universe under the three

aspets we mentioned in the introdution of this hapter: it is losed under

followers, losed under disjuntive sum, and losed under onjugates.

Lemma 4.77 If G is dead-ending then every follower of G is dead-ending.
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Proof. If H is a follower of G, then every follower of H is also a follower of

G; thus if G satis�es the de�nition of dead-ending, then so does H. �

Lemma 4.78 If G and H are dead-ending then G+H is dead-ending.

Proof. Any follower of G+H is of the form G′ +H ′
where G′

and H ′
are

(not neessarily proper) followers of G and H, respetively. If G′ +H ′
is a

Left end, then both G′
and H ′

are Left ends, whih must be dead, sine G
and H are dead-ending. Thus, any followers G′′

and H ′′
are Left ends, and

so all followers G′′ + H ′′
of G′ + H ′

are Left ends. A symmetri argument

holds if G′ +H ′
is a Right end, and so G+H is dead-ending. �

Lemma 4.79 If G is dead-ending, then G is dead-ending.

Proof. Any follower of G is the onjugate of a follower of G. If H is an end,

so is H, hene assuming H is a follower of G, H is a dead end, and so is H.

�

Under misère play, Left wins any Left end playing �rst as she already has

no move. In a general ontext, she might lose playing seond, for example

in the game {·|∗}, whih is both a Left end and a misère N -position. In the

dead-ending universe, however, Left wins any non-zero Left end playing �rst

or seond.

Lemma 4.80 If G 6= 0 is a dead Left end then G ∈ L−
, and if G 6= 0 is a

dead Right end then G ∈ R−
.

Proof. A Left end is always in L−
or N−

. If G is a dead Left end then

any Right option GR
is also a Left end, so Right has no good �rst move.

Similarly, a dead Right end is in R−
. �

In the following of this setion, we refer to two game funtions de�ned

below, whih are well-de�ned for our purpose, namely for numbers and ends.

De�nition 4.81 The left-length of a game G, denoted l(G), is the minimum

number of onseutive Left moves required for Left to reah zero in G. The
right-length r(G) of G is the minimum number of onseutive Right moves

required for Right to reah zero in G.

In general, the left- and right-length are well-de�ned if G has a non-

alternating path to zero for Left or Right, respetively, and if the shortest

of suh paths is never dominated by another option. The latter ondition

ensures l(G) = l(G′) when G ≡− G′
. As suggested above, both of these

onditions are met if G is a (normal-play) anonial-form number or if G is

an end in E . If l(G) and l(H) are both well-de�ned then l(G+H) is de�ned
and l(G+H) = l(G) + l(H). Similarly, when the right-length is de�ned for

G and H, we have r(G+H) = r(G) + r(H).
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It would be possible to extend these funtions to all games by replaing

�zero� by �a Left end� for the left-length, and by �a Right end� for the right-

length, but we want to insist here that in the ases we use it, the end we

reah is zero.

4.3.2 Integers and other dead ends

We �rst look at dead ends, with some fous on integers.

Reall that n denote the game {n − 1|·} when n is positive, where 0 =
{·|·}. Considering two positive integers n and m, their disjuntive sum has

the same game tree as the integer n + m. This is not true if n is negative

and m positive, and the two games (the disjuntive sum and the integer) are

not even equivalent in general misère play.

Any integer is an example of a dead end: if n > 0, then Right has no

move in n, and we indutively see that he has no move in any follower of n;

similarly, if n < 0, then n is a dead Left end. Thus, the following results for

ends in the dead-ending universe are also true for all integers, modulo E .
Our �rst result shows that when all games in a sum are dead ends, the

outome is ompletely determined by the left- and right-lengths of the games.

As a sum of Left ends is a Left end and a sum of Right ends is a Right end,

we only onsider two games in a sum of ends, one being a Left end and the

other a Right end.

Lemma 4.82 If G is a dead Right end and H is a dead Left end then

o−(G+H) =





N−
if l(G) = r(H)

L−
if l(G) < r(H)

R−
if l(G) > r(H)

Proof. Eah player has no hoie but to play in their own game, and so the

winner will be the player who an run out of moves �rst. �

We use Lemma 4.82 to prove the following theorem, whih demonstrates

the invertibility of all ends modulo E , even giving the orresponding inverse.

Theorem 4.83 If G is a dead end, then G+G ≡−
E 0.

Proof. Assume without loss of generality that G 6= 0 is a dead right

end. Sine every follower of a dead end is also a dead end, Lemma 4.2

applies, with S the set of all dead Left and Right ends. It therefore suf-

�es to show G+G+X ∈ L− ∪ N−
for any Left end X in E. We have

l(G) = r(G) and r(X) > 0, so l(G) 6 r(G) + r(X) = r(G+X), whih gives

G+G+X ∈ L− ∪ N−
by Lemma 4.82. �

We immediately get the following orollary by realling that integers are

dead ends.
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Corollary 4.84 If n is an integer, then n+ n ≡−
E 0.

This implies the following orollary about any sum of integers.

Corollary 4.85 If n and m are integers, then n+m ≡−
E n+m.

Reall that equivaleny in E implies equivaleny in all subuniverse of E .
Thus, in the universe of integers alone, every integer keeps its inverse.

Lemma 4.82 shows that when playing a sum of dead ends, both players

aim to exhaust their moves as fast as possible. This suggests that longer

paths to zero would be dominated by shorter paths; in partiular, this would

give a total ordering of integers among dead ends, as established in Theo-

rem 4.86 below. Note that this ordering only holds in the subuniverse of the

losure of dead ends, that is the universe of sums of dead ends, and not in

the whole universe E . Atually, we show right in Theorem 4.87 that distint

integers are inomparable modulo E , just as they are in the general misère

universe.

Theorem 4.86 If n < m ∈ Z, then n >−
m modulo the losure of dead

ends.

Proof. By Corollary 4.84, it su�es to show n + m >− 0 (equivalently,

k > 0 for any negative integer k), modulo the losure of dead ends. Let X
be any game in the losure of dead ends; then X = Y + Z where Y is a

dead Right end and Z is a dead Left end. Suppose Left wins X playing �rst;

then by Lemma 4.82, l(Y ) 6 r(Z). We need to show Left wins k + X, so

that o−(k +X) > o−(X). Sine k is a negative integer, r(k) is de�ned and

r(k) = −k > 0. Thus l(Y ) 6 r(Z) < r(Z) + r(k) = r(Z + k), whih gives

k + Y + Z = k+X ∈ L− ∪ N−
, by Lemma 4.82. �

In general, an inequality under misère play between games implies the

same inequality under normal play between the same games [38℄. This is

also true for some spei� universes, as we have seen with the diot universe

in Setion 4.2. Theorem 4.86 shows this is not always true for any universe.

We now show that integers, despite being totally ordered in the losure

of dead ends, are pairwise inomparable in the dead-ending universe.

Theorem 4.87 If n 6= m ∈ Z, then n ‖−E m.

Proof. Assume n > m.

De�ne two families of games αk and βk by

α1 = {0|0};αk = {0|αk−1};βk = {αk|αk}.

Note that o−(βk) = N and o−(k + βk) = P for all pos-

itive k. Thus m + m + βn−m ≡−
E βn−m ∈ N−

and
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n + m + βn−m ≡−
E n−m + βn−m ∈ P−

, and m + βn−m witnesses

both n �−
E m and n 
−

E m. �

As integers are pairwise inomparable, a dead end having several options

might have no E-dominated option. Thus, in the dead-ending universe, there

exists ends that are not integers. However, when restriting ourselves to the

subuniverse of the losure of dead ends, the ordering given by theorem 4.86

implies that every end redues to an integer. This fat is presented in the

following lemma.

Lemma 4.88 If G is a dead end then G ≡−
n modulo the losure of dead

ends, where n = l(G) if G is a Right end and n = −r(G) if G is a Left end.

Proof. Let G be a dead Right end (the argument for Left ends is sym-

metri). Assume by indution that every option GLi
of G (neessarily a

dead Right end) is equivalent to the integer l(GLi). Modulo dead ends, by

Theorem 4.86, these Left options are totally ordered; thus G = {GL1 |·} for

GL1
with smallest left-length. Then G is the anonial form of the integer

l(GL1) + 1 = l(G). �

Lemma 4.88 shows that the losure of dead ends has preisely the same

misère monoid as the losure of integers. The game of Domineering on

1 × n and n × 1 board is an instane of these universes. We are now able

to ompletely desribe the misère monoid of the losure of dead ends, whih

we present in Theorem 4.89.

Theorem 4.89 Under the mapping

G 7→

{
αl(G)

if G is a Right end

α−r(G)
if G is a Left end

,

the misère monoid of the losure of dead ends is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with outome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}

and total ordering

αn > αm ⇔ n < m.

4.3.3 Numbers

4.3.3.1 The misère monoid of Q2

We now look at all numbers under their normal anonial form.



154 4.3. A peek at the dead-ending universe

We say a game a is a non-integer number if it is the normal-play anonial

form of a (non-integer) dyadi rational, that is

a =
2∗m+1

2k
=

{
2∗m

2k

∣∣2∗m+2

2k

}
,

with k > 0. The set of all integer and non-integer (ombinatorial game)

numbers is thus the set of dyadi rationals, whih we denote by Q2. As we

did for integers previously, we now determine the outome of a general sum

of dyadi rationals and thereby desribe the misère monoid of the losure of

numbers.

Note that the sum of two non-integer numbers (even if both are positive)

is not neessarily another number. For example,

1

2
+ 1

2
6= 1. We see in the

following that, unlike integers, the set of dyadi rationals is not losed under

disjuntive sum even when restrited to the dead-ending universe; however,

losure does our when we restrit to numbers alone.

Lemma 4.92 below, analogous to Lemma 4.82 of the previous setion,

shows that the outome of a sum of numbers is determined by the left-

and right-lengths of the individual numbers. To prove this, we require

Lemma 4.91, whih establishes a relationship between the left- or right-

lengths of numbers and their options; and to prove Lemma 4.91, we need

the following proposition.

Proposition 4.90 If a ∈ Q2\Z then at least one of aRL
and aLR exists, and

either a
L = a

RL
or a

R = a
LR

.

Proof. Let a = 2∗m+1

2k
with k > 0. If m ≡ 0( mod 2) then

a
L =

2∗m

2k
;aR =

2∗m+2

2k
=

2∗m+2

2

2k−1
=

{
2∗m

2

2k−1

∣∣
2∗m+4

2

2k−1

}
,

so a
L = a

RL
. Otherwise, m ≡ 1( mod 2) and then

a
L =

2∗m

2k
=

2∗m

2

2k−1
=

{
2∗m−2

2

2k−1

∣∣
2∗m+2

2

2k−1

}
;aR =

2∗m+2

2k
,

so a
R = a

LR
. �

Note that if a > 0 is a dyadi rational, then l(a) = 1 + l(aL), and
if a < 0 is a dyadi rational, then r(a) = 1 + r(aR). We also have the

following inequalities for left-lengths of right options and right-lengths of

left options, when a is a non-integer dyadi rational.

Lemma 4.91 If a ∈ Q2\Z is positive, then l(aR) 6 l(a); if a is negative,

then r(aL) 6 r(a).
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Proof. Assume a > 0 (the argument for a < 0 is symmetri). Sine a is in

anonial form, both a
L
and a

R
are positive numbers. If a

L = a
RL

, then

l(aR) = 1 + l(aRL) = 1 + l(aL) = l(a). Otherwise a
R = a

LR
, by Proposi-

tion 4.90; then a
L
is not an integer beause a

LR
exists, so by indution we

obtain l(aR) = l(aLR) 6 l(aL) = l(a)− 1 < l(a). �

We an now determine the outome of a general sum of numbers, both

integer and non-integer.

Lemma 4.92 If {ai}16i6n and {bi}16i6m are sets of positive and negative

numbers, respetively, with k =
∑n

i=1 l(ai)−
∑m

i=1 r(bi), then

o−

(
n∑

i=1

ai +

m∑

i=1

bi

)
=





L−
if k < 0

N−
if k = 0

R−
if k > 0.

Proof. Let G =
∑n

i=1 ai+
∑m

i=1 bi. All followers of G are also of this form,

so assume the result holds for every proper follower of G. Suppose k < 0. If
n = 0 then Left will run out of moves �rst beause Left annot move last in

any negative number. So assume n > 0. Left moving �rst an move in an ai

to redue k by one (sine l(ai
L) = l(ai) − 1), whih is a Left-win position

by indution. If Right moves �rst in an ai then k does not inrease, sine

l(ai
R) 6 l(ai) by Lemma 4.91, so the position is a Left-win by indution; if

Right moves �rst in a bi then k does inrease by one, but Left an respond in

an ai (sine n > 0) to bring k down again, leaving another Left-win position,

by indution. Thus G ∈ L−
if k < 0.

The argument for k > 0 is symmetri. If k = 0 then either G = 0 is

trivially next-win, or both n and m are at least 1 and both players have a

good �rst move to hange k in their favour. �

Lemma 4.92 shows that in general misère play, the outome of a sum of

numbers is ompletely determined by the left-lengths and right-lengths of the

positive and negative omponents, respetively. From this we an onlude

that, modulo the losure of anonial-form numbers, a positive number a is

equivalent to every other number with left-length l(a). In partiular, every

positive number a is equivalent to the integer l(a). This is Corollary 4.93

below; together with Theorem 4.96, it will allow us to desribe the misère

monoid of anonial-form numbers.

Corollary 4.93 If a is a number, then

a ≡−
Q2

{
l(a) if a > 0

−r(a) if a < 0

As examples, the dyadi rational

3

4
is equivalent to 2, and −11

8
is equiv-

alent to −3, modulo Q2. Note that these equivalenies do not hold in the
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larger universe E , as we see in the following that if a 6= b are numbers, then
a 6≡−

E b.

We see then that the losure of numbers is isomorphi to the losure of

just integers; when restrited to numbers alone, every non-integer is equiva-

lent to an integer. Thus the misère monoid of numbers, given below, is the

same monoid presented in Theorem 4.89.

Theorem 4.94 Under the mapping

a 7→

{
αl(a)

if a is positive

α−r(a)
if a is negative

,

the misère monoid of the losure of anonial-form dyadi rationals is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with outome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}.

As with integers, some of the struture found in the number universe is

also present in the larger universe E . We now give a proof that all numbers,

and not just integers, are invertible in the universe of dead-ending games,

having their onjugates as inverses. We require the following lemma, an

extension of Lemma 4.92.

Lemma 4.95 If {ai}16i6n and {bi}16i6m are sets of positive and negative

numbers, respetively, and

∑n
i=1 l(ai)−

∑m
i=1 r(bi) < 0, then

o−

(
n∑

i=1

ai +
m∑

i=1

bi

)
= L−

for any dead Left end X.

Proof. The argument from Lemma 4.92 works again, sine if Right uses his

turn to play in X then Left responds with a move in a1 to derease k by 1,
whih is a win for Left by indution. �

We an now apply Lemma 4.2 to onlude on the invertibility of all

numbers.

Theorem 4.96 If a ∈ Q2, then a+ a ≡−
E 0.

Proof. Without loss of generality we an assume a is positive. Sine every

follower of a number is also a number, we an use Lemma 4.2. That is, it suf-

�es to show a+ a+X ∈ L− ∪ N−
for any Left end X ∈ E . IfX = 0, this is

true by Lemma 4.92. If X 6= 0, then we laim a+ a+X ∈ L−
; assume this
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1

2
−

1

2

Figure 4.19: Canonial form of

1

2
and −

1

2
in Hakenbush

holds for all followers of a. Left an win playing �rst on a+ a+X by mov-

ing to a
L
, sine l(aL)− r(a) = l(aL)− l(a) < 0 implies a

L + a+X ∈ L−

by Lemma 4.95. If Right plays �rst in X, then again Left wins by mov-

ing a to a
L
; if Right plays �rst in a, then Left opies in a and wins on

a
L + a

L +X ∈ L−
by indution. �

Theorem 4.96 shows that in dead-ending games like Col, Domineering,

et., any position orresponding to a normal-play anonial-form number

has an additive inverse under misère play. So, for example, the positions in

Figure 4.19 would anel eah other in a game of misère Hakenbush.

We now look at sums of dead ends with numbers, and start by giving the

misère outome of suh a sum.

Lemma 4.97 If {ai}16i6n is a set of positive numbers and Left ends,

and {bi}16i6m is a set of negative numbers and Right ends, with

k =
∑n

i=1 l(ai)−
∑m

i=1 r(bi), then

o−

(
n∑

i=1

ai +

m∑

i=1

bi

)
=





L−
if k < 0

N−
if k = 0

R−
if k > 0.

Proof. The argument from Lemma 4.92 works again, a move from Right

may inrease k by at most 1, while a move from Left may derease k by at

most 1. �

This gives us the misère monoid of the losure of dead ends and numbers.

Theorem 4.98 Under the mapping

G 7→

{
αl(G)

if G is a Left end or the anonial form of a positive number

α−r(G)
if G is a Right end or the anonial form of a negative number
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the misère monoid of the losure of dead ends and anonial-form dyadi

rationals is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with outome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}.

4.3.3.2 The partial order of numbers modulo E

Previously, we found that all integers were inomparable in the dead-ending

universe. We will see now that non-integer numbers are a bit more oop-

erative; although not totally ordered, we do have a nie haraterisation of

the partial order of numbers in the universe E . First note that from Corol-

lary 4.57, we get the following result.

Theorem 4.99 If G >
−
E H, then G >+ H

This gives us the following orollary on numbers.

Corollary 4.100 If a, b ∈ Q2 and a > b, then a 
−
E b.

Theorem 4.99 says that if a >
−
E b, then a > b as real numbers (or as

normal-play games). The onverse is learly not true for integers, by Theo-

rem 4.87; it is also not true for non-integers, sine

1

2
+ 1

2
is a misèreN -position

while

3

4
+ 1

2
is a misère R-position, so that

1

2

−

E
3

4
. Theorem 4.103 shows

that the additional stipulation l(a) 6 l(b) is su�ient for a >
−
E b. To prove

this result we need the following lemmas. As before, non-bold symbols rep-

resent atual numbers, so that `a < b' indiates inequality of a and b as

rational numbers, and aL means the rational number orresponding to the

left-option of the game a in anonial form. Reall that if x = {xL|xR} is in
(normal- play) anonial form then x is the simplest number (i.e., the num-

ber with smallest birthday) suh that xL < x < xR. Thus, if xL < x, y < xR

and x 6= y, then x is simpler than y.

Lemma 4.101 If a and b are positive numbers suh that aL < b < a, then
l(aL) < l(b).

Proof. We have aL < b < a < aR, so a must be simpler than

b. Thus bL > aL, sine otherwise bL < aL < b < bR would imply

that b is simpler than a
L
, whih is simpler than a. Now, if bL = aL

then l(aL) = l(bL) = l(b)− 1 < l(b), and if bL > aL then by indution

aL < bL < b < a gives l(aL) < l(bL) = l(b)− 1 < l(b). �

Lemma 4.101 is now used to prove Lemma 4.102 below, whih is needed

for the proof of Theorem 4.103. Note that in the following two arguments we

frequently use the fat that, if a >
−
E b, then Left wins the position a+b+X

whenever she wins X ∈ E .
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Lemma 4.102 If a and b are positive numbers suh that aL < b < a, then
a >−

E b.

Proof. Note that b /∈ Z sine there is no integer between aL and a if a is in

anonial form. We must show that Left wins a+ b+X whenever she wins

X ∈ E .
Case 1: bR = a.

Left an win a+b+X by playing her winning strategy on X. If Right moves

in a+ b to a
R+ b+X ′

, then Left responds to a
R + b

R+X ′ = a
R+a+X ′

,

whih she wins by indution sine aRL 6 aL (see Proposition 4.90) gives

aRL < a < aR. If Right moves to a + b
R
+ X ′ = b

R + b
R
+ X ′

, with

X ′ ∈ L− ∪P−
(sine Left is playing her winning strategy in X), then Left's

response depends on whether bRL = bL or bLR = bR: in the former ase,

Left moves to b
RL + b

R
+X ′ = b

L + b
L +X ′ ≡−

E X; in the latter ase, Left

moves to b
R + b

L
L
+X ′ = b

R + b
LR +X ′ = b

R + b
R +X ′ ≡−

E X ′
. In either

ase, Left wins as the previous player on X ′ ∈ L− ∪ P−
.

When Left runs out of moves in X, she moves to a
L + b + X ′′

. By

Lemma 4.101 we know l(aL) < l(b), and this gives o−(aL + b +X ′′) = L−

by Lemma 4.95.

Case 2: bR 6= a.
Note that bR annot be greater than a, sine aL < b < a < aR implies a is

simpler than b, while bL < b < a < bR would imply that b is simpler than

a. So bR < a, and together with aL < b < bR this gives aL < bR < a, whih
shows a >

−
E b

R
by indution. Similarly bRL 6 bL < b < bR implies b

R >
−
E b,

by Case 1. Then by transitivity we have a >
−
E b. �

With lemma 4.102, we an now prove Theorem 4.103 below. The sym-

metri result for negative numbers holds as well.

Theorem 4.103 If a and b are positive numbers suh that a > b and

l(a) 6 l(b), then a >−
E b.

Proof. By Corollary 4.100, we have a 6≡−
E b, and so it su�es to show

a >
−
E b. Again we have b /∈ Z. Sine a > b, if b > aL, then Lemma 4.102

gives a >
−
E b as required. So assume b 6 aL. Again, let X ∈ E be a game

whih Left wins playing �rst; we must show Left wins a+b+X playing �rst.

Left should follow her winning strategy from X. If Right plays to a+b
L+X ′

,

where X ′ ∈ L−∪P−
, then Left responds with a

L+ b
L+X ′

, whih she wins

by indution: bL < b 6 aL and l(bL) = l(b) − 1 > l(a) − 1 = l(aL) implies

a
L >−

E b
L
.

If Right plays to a
R + b + X ′

(assuming this move exists), then

Left's response is a
RL + b + X ′

if aRL > b, or a
R + b

R + X ′
if

aRL 6 b. In the �rst ase, Left wins by indution beause aRL > b and

l(aRL) = l(aR)− 1 6 l(a)− 1 < l(b) implies a
RL >−

E b. In the latter ase,
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note �rst that in fat aRL 6= b, sine we have already seen that as games

they have di�erent left-lengths. Then we see aRL < b < a < aR < aRR
,

whih shows a
R
must be simpler than b. This gives bR 6 aR, as otherwise

bL < b < a < aR < bR would imply that b is simpler than a
R
. If bR = aR,

then b
R = a

R
, and if bR < aR, then we an apply Lemma 4.102 to onlude

that a
R >−

E b
R
. In either ase, Left wins a

R + b
R +X ′

with X ′ ∈ L− ∪ P−

as the seond player.

Finally, if Left runs out of moves in X, then she moves to a
L + b+X ′′

where X ′′
is a dead Left end; then Left wins by Lemma 4.95 beause

l(aL) < l(a) 6 l(b) = r(b). �

Corollary 4.104 For positive numbers a, b ∈ Q2, a >−
E b if and only if

a > b and l(a) 6 l(b).

Proof. We need only prove the onverse of Theorem 4.103. Suppose a > b
and l(a) > l(b); then by Theorem 4.99, it annot be that a 6

−
E b, so we need

only show a �−
E b. We have o−(b+ b) = N , while o−(a + b) = R, sine in

isolation the latter sum is equivalent to the positive integer l(a) − l(b), by
Theorem 4.94. Thus a �−

E b. �

To ompletely desribe the partial order of numbers within E , it remains

to onsider the omparability of a and b when a > 0 and b < 0 (or, sym-

metrially, when a < 0 and b > 0). As before, by Corollary 4.100, we annot

have a 6
−
E b, and the same argument as above (b+b ∈ N−

and a+b ∈ R−
)

shows a � b. The results on the order between numbers are summarised

below.

Theorem 4.105 The partial order of Q2, modulo E, is given by

a ≡−
E b if a = b,

a >−
E b if 0 < a < b and l(a) 6 l(b)

or b < a < 0 and r(b) 6 r(a),
a ‖−E b otherwise.

4.3.4 Zeros in the dead-ending universe

We have found that integer and non-integer numbers, as well as all ends,

satisfy G+G ≡−
E 0. It is not the ase that every game in E has its onjugate

as inverse; for example, ∗ + ∗ 6≡−
E 0, although the equivalene does hold in

the universe of diot games. Milley [26℄ showed that no diot game born on

day 2 is its onjugate inverse modulo the dead-ending universe, despite six

out of the seven of them being their onjugate inverses in the diot universe.

The following lemma desribes an in�nite family of games that are not

invertible in the universe of dead-ending games.

Lemma 4.106 If G = {n1, . . . ,nk|m1, . . . ,mℓ}, with eah ni,mi ∈ N,
then G+G 6≡−

E 0.
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GLk GL2 GL1 GR1 GR2 GRℓ

Figure 4.20: An in�nite family of games equivalent to zero modulo E

Proof. Let X = {n1, . . . ,nk,m1, . . . ,mℓ|·} ∈ R−
. We desribe a winning

strategy for Left playing seond in the game G+G+X. Right has no �rst

move in X, so Right's move is of the form G+ni+X ormi+G+X. Left an

respond by moving X to ni or mi, respetively, leaving a game equivalent to

G or G modulo E . Now Right plays there to a non-positive integer, whih

as a Right end must be in L−
or N−

. �

We onlude with an in�nite family of games that are equivalent to zero

in the dead-ending universe, whih are not of the form G + G for some G,
apart from {1|1} = 1+ 1.

Theorem 4.107 If G is a dead-ending game suh that every GL
has a Right

option to 0 and at least one GL
, say GL1

, is a Left end, and every GR
has a

Left option to 0 and at least one GR
, say GR1

, is a Right end, then G ≡−
E 0.

Proof. Let X be any game in E and suppose Left wins X. Then Left wins

G + X by following her strategy in X. If Right plays in G then he moves

to some GR + X ′
from a position G + X ′

with X ′ ∈ L− ∪ P−
; Left an

respond to 0 + X ′
and win as the seond player. If both players ignore G

then eventually Left runs out of moves in X and plays to GL1 +X ′′
, where

X ′′
is a Left end. But GL1

is a non-zero Left end, so the sum is a Left-win

by Lemma 4.80. �

Example 4.108 Figure 4.20 illustrates the games onsidered in Theo-

rem 4.107. Dashed lines indiate that options are present a natural number

of times, inluding 0, and dashed verties indiate there might be a tree of

any size from this vertex, as long as the whole game stays dead-ending.

4.4 Perspetives

In this hapter, we looked at partiular games, and took a step into the theory

of misère quotients introdued by Plambek and Siegel, with the universe of

diot games and the dead-ending universe.

In the games we studied, results are mixed.
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The misère version of Geography is pspae omplete even for some

`small' lass of graphs, but even if the problem Edge Geography on undi-

reted graph is pspae omplete in its normal version on general graphs,

there exists an algorithm that solves it in the restrited ase of bipartite

undireted graphs [18℄.

Question 4.109 What is the omplexity of �nding the misère outome of

any Vertex Geography position on bipartite undireted graphs?

In normal version, our results on VertexNim extended to Stokman's

version of Vertex NimG, where a vertex of weight 0 is not removed. This

does not seem true in its misère version.

As all our results under the misère onvention are diretly dedued from

our results under the normal onvention, we make the following onjeture.

Conjeture 4.110 The omplexity of �nding the misère outome of any

VertexNim position on direted graphs with a token on a vertex is the same

as the omplexity of �nding the normal outome of any VertexNim position

on direted graphs with a token on a vertex.

On Timber, we only redued the problem to oriented forests and found

the outome of any oriented path. As Timber is not a game that separates

in several omponents, being able to �nd the outome of any onneted

omponent would already be interesting.

Question 4.111 Is there a polynomial-time algorithm that gives the misère

outome of any Timber position on onneted direted graphs?

On Timbush, we only redued the problem to oriented forests, but the

problem is an extension of Timber, on whih we do not know muh.

On Toppling Dominoes, we gave the misère outome of a single row,

and found the misère monoid of Toppling Dominoes positions without

grey dominoes. Unexpetedly, the problem seems easier than its normal

version. Hene, we ask the following question.

Question 4.112 Can one �nd a polynomial-time algorithm that gives the

misère outome of any Toppling Dominoes position (on several rows)?

On Col, we gave the misère outome of any grey subdivided star.

In the ase of diot games, we de�ned a redued form and proved it

was unique, before using this result to ount the number of diot games in

anonial form born by day 3.
One problem of this anonial form is that one needs �rst to detet D-

dominated and D-reversible options to be able to delete or bypass them,

whih we do not know whether it is solvable in polynomial time. Hene, we

have the following question.



Chapter 4. Misère games 163

Question 4.113 What is the omplexity of omputing the anonial form of

any diot?

It would also be interesting to �nd a anonial form for other universes.

Some of the proofs presented in that setion were true for any universe, most

others would need the universe to be losed by adjoint, but the hard ase

to adapt seems to be the ase of reversible options through any end. The

universe of dead-ending games is losed by adjoint, and though we found

some way to deal with reversible options through dead ends, it was not

enough to give a unique form for eah equivalent lass modulo the dead-

ending universe.

Question 4.114 Is there a natural way to de�ne a anonial form for dead-

ending games?

We know we an still bypass most reversible options thanks to the fol-

lowing lemma.

Lemma 4.115 Let U be a universe and G be a game. Suppose GL1
is

U-reversible through GL1R1
, suh that GL1R1

is not a Left end. Let G′
be

the game obtained by bypassing GL1
:

G′ = {(GL1R1)L, GL \ {GL1}|GR} .

Then G ≡−
U G′

.

The problem is to deal with options reversible through ends.

In the ase of dead-ending games, we found the misère monoid of ends

and numbers, and gave the partial order of numbers modulo the dead-ending

universe.

The original motivation of studying dead-ending games is to give a nat-

ural universe for the spei� games we mentioned (Col, Domineering,

Hakenbush. . . ), games where the players plae piees on a board never

to remove them, that we all plaement games. A formal de�nition of a

plaement game is the following.

De�nition 4.116 De�ne a game with a set M = ML ∪ MR
of Left and

Right moves and a forbidding funtion φ : 2M → 2M suh that we have for

any subset X of 2M,

⋃
Y⊂X φ(Y ) ⊆ φ(X) and X ⊆ φ(X) as follows: a posi-

tion is a subset of M; from a position M , Left an move to M ∪ {m} for any

m ∈ ML\φ(M), and Right an move to M ∪ {m} for any m ∈ MR \ φ(M).
Then a game G is a plaement game if there exist a set M, a funtion φ and

a subset M of M suh that G is the position obtained from M and φ on the

subset M as de�ned above, modulo the multipliity of options.
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Figure 4.21: A dead-ending game whih is not a plaement game

Being a plaement game is stronger than being a dead-ending game. For

example, the position on Figure 4.21 is a dead-ending game, and even a diot

game, whih is not a plaement game. We an atually prove that if you

de�ne reursively the funtion rb suh that rb(G) = 0 if G is a Right end

and rb(G) = 1+maxGR∈GR rb(GR), a plaement game satis�es the ondition

rb(GL) 6 rb(G) for any Left option GL
of G (whih is not the ase for the

position on Figure 4.21).

Among properties we naturally onsider, the universe of plaement games

is losed under followers, disjuntive sum and onjugates.

Question 4.117 What more an be said about plaement games?

We an also look on a more general ontext of misère games.

In all examples of games we have seen having an inverse, the onjugate

of the game is an inverse. A natural question is: is this always true? Milley

[26℄ proved it is not, giving an example in a universe whih is not losed

under onjugates. In [34℄, Plambek and Siegel gives an example of an im-

partial universe, disproving even the ase where the universe is losed under

followers, disjuntive sum and onjugates. This example was not highlighted

in the paper as it is prior to the question. Having some answer for the above

question, we now ask the following question.

Question 4.118 For whih universes U do we have G + H ≡−
U 0 implies

H ≡−
U G?

We know it is true for the universe G of all games, as the only way to

have G+G ≡−
U 0 is to have G = 0, and we have examples of universes where

it is not, but even without asking for a haraterisation, it would be nie to

know if universes suh as impartial games, diot games, dead-ending games,

or even plaement games have this property.

Another fat one may notie in this hapter is that in all universes we pre-

sented where there is no P-position, suh as the universe of LR-Toppling
Dominoes and the losure of dead-ends and numbers, all elements are in-

vertible, sometimes even in a bigger universe. This was onjetured by Milley.
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Conjeture 4.119 (Milley (personal ommuniation)) In any uni-

verse U losed under followers, disjuntive sum and onjugates, if U ontains

no P-position, then every element of U has an inverse modulo U in U .

For example, the outome of a position in the losure of LR-Toppling
Dominoes, dead-ends and anonial-form dyadi rationals is given by the

following proposition.

Proposition 4.120 If G is an LR-Toppling Dominoes posi-

tion, {ai}16i6n is a set of positive numbers and Left ends, and

{bi}16i6m is a set of negative numbers and Right ends, with

k = ltd(G) − rtd(G) +
∑n

i=1 l(ai)−
∑m

i=1 r(bi), then

o−

(
G+

n∑

i=1

ai +

m∑

i=1

bi

)
=





L−
if k < 0

N−
if k = 0

R−
if k > 0.

This gives a misère monoid isomorphi to both the misère monoid of

LR-Toppling Dominoes positions, and to the monoid of the losure of

dead ends and anonial-form dyadi rationals, whih raises the following

onjeture.

Conjeture 4.121 If U and U ′
are two universes losed under followers,

disjuntive sum and onjugates having misère monoids isomorphi to MZ,

then the misère monoid of the losure of positions of U and U ′
is also iso-

morphi to MZ.

This might even be strengthened as follows.

Conjeture 4.122 If U and U ′
are two universes losed under followers,

disjuntive sum and onjugates having isomorphi misère monoids, then the

misère monoid of the losure of positions of U and U ′
is also isomorphi to

their ommon misère monoid.

In the last two onjetures, we onsider the outome partition as part of

the misère monoid, that is we onsider they should be isomorphi as well.
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Chapter 5

Domination Game

The domination game is not a ombinatorial game. Nevertheless, some

tools used in its study are quite similar to some ombinatorial tools. For

example, the imagination strategy method proposed in [7℄ is similar to the

stealing strategy argument stating the player having a winning strategy in

Hex. We here show another parallel by onsidering the game on a non-

onneted graph as a disjuntive sum.

Reall that a vertex is said to dominate itself and its neighbours, and that

a set of verties is a dominating set if every vertex of the graph is dominated

by some vertex in the set.

The Domination game was introdued by Bre²ar, Klavºar and Rall in

[7℄. It is played on a �nite graph G by two players, Dominator and Staller.

They alternate turns in hoosing a vertex that dominates at least one new

vertex. The game ends when there is no possible move anymmore, that is

when the hosen verties form a dominating set. Dominator's goal is that

the game �nishes in as few moves as possible while Staller tries to keep the

game going as long as she an. There are two possible variants of the game,

depending on who starts the game. In Game 1, Dominator starts, while in

Game 2, Staller starts. The game domination number, denoted by γg(G),
is the total number of hosen verties in Game 1 when both players play

optimally. Similarly, the Staller-start game domination number γ′g(G) is the
total number of hosen verties in Game 2 when both players play optimally.

Variants of the game where one player is allowed to pass a move one

were already onsidered in [20℄ (and possibly elsewhere). In the Dominator-

pass game, Dominator is allowed to pass one move, while in the Staller-pass

game, Staller is. We denote respetively by γg
dp

and γ′g
dp

the size of the set

of hosen verties in game 1 and 2 where Dominator is allowed to pass one

move, and by γg
sp

and γ′g
sp

the size of the set of hosen verties in game 1

and 2 where Staller is allowed to pass a move. Note that passing does not

ount as a move in the game domination number, as the value is the number

of hosen verties.

We say that a graph G realises a pair (k, ℓ) ∈ N × N if γg(G) = k and

γ′g(G) = ℓ. For a graph G = (V,E) and a subset of verties S ⊆ V , we

denote by G|S the partially dominated graph G where the verties of S are

dominated. Kinnersley, West and Zamani [20℄ proved what is known as the

ontinuation priniple:
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Theorem 5.1 (Kinnersley et al[20℄) [Continuation Priniple℄ Let G
be a graph and A,B ⊆ V (G). If B ⊆ A, then γg(G|B) > γg(G|A) and

γ′g(G|B) 6 γ′g(G|A).

This very useful priniple to prove inequalities involving γg and γ′g has

the following orollary, part of whih was already proved in [7℄.

Theorem 5.2 (Bre²ar et al. [7℄, Kinnersley et al. [20℄) For any

graph G, |γg(G)− γ′g(G)| 6 1

As a onsequene of this theorem, we have that realisable pairs are ne-

essarily of the form (k, k+1), (k, k) and (k, k−1). It is known that all these

pairs are indeed realisable, examples of graphs of eah of these three types

are given in [7, 8, 20, 21℄. We say a partially dominated graph G is a (k,+)
(resp. (k,=), (k,−)) if γg(G) = k and γ′g(G) = k + 1 (resp. γg(G) = k and

γ′g(G) = k, γg(G) = k and γ′g(G) = k−1). Additionally, we say that a graph

G is a plus (resp. equal, minus) if G is (k,+) (resp. (k,=), (k,−)) for
some k > 1.

Observation 5.3 If a partially dominated graph G|S is a (k,−), then for

any legal move u in G|S, the graph G|(S ∪N [u]) is a (k − 2,+).

Proof. Let G|S be a (k,−) and u be any legal move in G|S. By de�nition

of the game domination number, we have k = γg(G|S) 6 1+γ′g(G|S∪N [u]).
Similarly, k − 1 = γ′g(G|S) > 1 + γg(G|S ∪ N [u]). By Theorem 5.2, we get

that

k − 1 6 γ′g(G|S ∪N [u]) 6 γg(G|S ∪N [u]) + 1 6 k − 1

and so equality holds throughout this inequality hain. Thus G|(S ∪N [u] is
a (k − 2,+), as required. �

We say that a graph G is a no-minus graph if for any subset of verties S,
γg(G|S) 6 γ′g(G|S). Intuitively, it seems that no player getd any advantage

to pass in a no-minus graph.

In this hapter, we are interested in no-minus graphs and possible reali-

sations of unions of graphs. In Setion 5.1, we prove that tri-split graphs and

dually hordal graphs are no-minus graphs. In Setion 5.2, we give bounds

on the game domination number of the union of two graphs, given that we

know the game domination number of eah omponent of the union, �rst

when both graphs are no-minus graphs, then in the general ase.

The results presented in this hapter are a joint work with Paul Dorbe

and Ga²per Ko²mrlj [13℄.

5.1 About no-minus graphs . . . . . . . . . . . . . . . 169



Chapter 5. Domination Game 169

5.2 The domination game played on unions of graphs 173

5.2.1 Union of no-minus graphs . . . . . . . . . . . . . . 173

5.2.2 General ase . . . . . . . . . . . . . . . . . . . . . 175

5.3 Perspetives . . . . . . . . . . . . . . . . . . . . . . 179

5.1 About no-minus graphs

In this setion, we onsider no-minus graphs.

To begin with no-minus graphs, we �rst need to prove what we laimed

was the intuitive de�nition of a no-minus, i.e. that it is not helpful to be

allowed to pass in suh games. In [7℄, Bre²ar et al. proved the following in

general:

Lemma 5.4 ([7℄) Let G be a graph. We have γg(G) ≤ γspg (G) ≤ γg(G) + 1

and γg(G)− 1 ≤ γdpg (G) ≤ γg(G).

Though the authors of [7℄ did not prove it, the exat same proof teh-

nique (using the imagination strategy) an give the following inequalities,

for partially dominated graphs and for both games 1 and 2.

Lemma 5.5 Let G be a graph, S a subset of verties of G. We have

γg(G|S) ≤ γspg (G|S) ≤ γg(G|S) + 1 ,

γ′g(G|S) ≤ γ′spg (G|S) ≤ γ′g(G|S) + 1 ,

γg(G|S) − 1 ≤ γdpg (G|S) ≤ γg(G|S) ,

γ′g(G|S) − 1 ≤ γ′dpg (G|S) ≤ γ′g(G|S) .

We now prove the following proposition on no-minus graphs, showing

that being allowed to pass is not helpful in suh graphs.

Proposition 5.6 If G is a no-minus graph, then

γg
sp(G) = γg

dp(G) = γg(G) and γ′g
sp(G) = γ′g

dp(G) = γ′g(G).

Proof. First, note that a player would pass a move only if it bene-

�ts them, so for any graph G (even if not a no-minus graph), we have

γg
dp(G) 6 γg(G) 6 γg

sp(G) and γ′g
dp(G) 6 γ′g(G) 6 γ′g

sp(G). Now, suppose

a no-minus graph G satis�es γg
dp(G) < γg(G). We use the imagination strat-

egy to reah a ontradition.

Consider a normal Dominator-start game played on G where Dominator

imagines he is playing a Dominator-pass game, while Staller plays optimally

in the normal game. Sine γg
dp(G) < γg(G), the strategy of Dominator
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inludes passing a move at some point, say after x moves have been played.

Let S be the set of dominated verties at that point. Sine Dominator played

optimally the Dominator-pass domination game (but not neessarily Staller),

if he was allowed to pass that move the game should end in no more than

γg
dp(G). We thus have the following inequality:

x+ γ′g(G|S) 6 γg
dp(G)

Now, remark that sine Staller played optimally in the normal game, we have

that

x+ γg(G|S) > γg(G)

Adding the fat that G is a no-minus, so that γg(G|S) 6 γ′g(G|S), we reah
the following ontradition:

γg(G) 6 x+ γg(G|S) 6 x+ γ′g(G|S) 6 γg
dp(G) < γg(G) .

Similar arguments omplete the proof for the Staller-pass and/or Staller-

start games. �

The next lemma also expresses an early property of no-minus graphs. It

is an extension of a result on forests from [20℄, the proof is about the same.

Lemma 5.7 Let G be a graph, S ⊆ V (G), suh that for any S′ ⊇ S,
γg(G|S′) 6 γ′g(G|S′). Then we have γg(G ∪K1|S) > γg(G|S) + 1 and

γ′g(G ∪K1|S) > γ′g(G|S) + 1.

Proof. Given a graph G and a set S satisfying the hypothesis, we use

indution on the number of verties in V (G) \S. If V (G) \ S = ∅, the laim
is trivial. Suppose now that S  V (G) and that the laim is true for every

G|S′
with S  S′

.

Consider �rst game 1. Let v be an optimal �rst move for

Dominator in the game G ∪ K1|S. If v is the added ver-

tex, then γg(G ∪K1|S) = γ′g(G|S) + 1 > γg(G|S) + 1 by our assumption

on G|S, and the inequality follows. Otherwise, let S′ = S ∪N [v].
By the hoie of the move and indution hypothesis, we have

γg(G ∪K1|S) = 1 + γ′g(G ∪K1|S
′) > 1 + γ′g(G|S′) + 1. Sine v is not ne-

essarily an optimal �rst move for Dominator in the game on G|S, we also

have that γg(G|S) 6 1 + γ′g(G|S′) and the result follows.

Consider now game 2. Let w be an optimal �rst move for Staller in

the game G|S, and let S′′ = S ∪N [w]. By optimality of this move, we

have γ′g(G|S) = 1 + γg(G|S′′). Playing also w in G ∪ K1|S, Staller gets

γ′g(G ∪K1|S) > 1 + γg(G ∪K1|S
′′) > 2 + γg(G|S′′) by indution hypothe-

sis. The required inequality follows. �

It is known that forests are no-minus graphs [20℄. We now propose two

other families of graphs that are no-minus. The �rst is the family of tri-split
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graphs, a generalisation of split graphs and pseudo-split graph (exept it

does not ontain C5) inspired by [23℄. A graph is tri-split if its set of verties

an be partitioned into three disjoint sets A 6= ∅, B and C with the following

properties:

∀u ∈ A, ∀v ∈ A ∪ C : uv ∈ E(G),

∀u ∈ B, ∀v ∈ B ∪ C : uv /∈ E(G).

We prove the following.

Theorem 5.8 Conneted tri-split graphs are no-minus graphs.

Proof. Let G be a tri-split graph with the orresponding partition (A,B,C),
let S ⊆ V (G) be a subset of dominated verties, and onsider the game

played on G|S. If the game on G|S ends in at most two moves, then learly

γg(G|S) 6 γ′g(G|S). From now on, we assume that γg(G) > 3.
Observe that Dominator has an optimal strategy playing only in A (in

both game 1 and game 2). Indeed, any vertex u in B dominates only itself

and some vertex in A (at least one by onnetivity). Any neighbour v of u
in A dominates all of A and v, so is a better move than u for Dominator

by the ontinuation priniple. Similarly, the neighbourhood of any vertex in

C is inluded in the neighbourhood of any vertex in A. So we now assume

Dominator only plays in A in the rest of the proof.

Suppose we know an optimal strategy on Game 2 for Dominator, we

propose an (imagination) strategy for Game 1 guaranteeing it will �nish no

later than Game 2. Let Dominator imagine a �rst move v0 ∈ B ∪ C from

Staller and play the game on G|S as if playing in G|(S ∪N [v0]). Staller plays
optimally on G|S not knowing about Dominator's imagined game. Note that

after Dominator's �rst move, the only di�erene between the imagined game

and the real game is that v0 is dominated in the �rst but possibly not in the

seond. Indeed, all the neighbours of v0 belong to A∪C, whih are dominated

by Dominator's �rst move (in A by our assumption). Therefore, any move

played by Dominator in his imagined game is legal in the real game, though

Staller may eventually play a move in the real game that is illegal in the

imagined game, provided it newly dominates only v0. If she does so and the

game is not �nished yet, then Dominator imagines she played any legal move

v1 in B instead and ontinues. This may happen again, leading Dominator

to imagine a move v2 and so on. Denote by vi the last suh vertex before

the game ends, we thus have that vi is the only vertex possibly dominated

in the imagined game but not in the real game.

Assume now that the imagined game is just �nished. Denote by kI the

total number of moves in this imagined game. Note that the imagined game

looks like a Game 2 where Dominator played optimally but possibly not

Staller. We thus have that kI 6 γ′g(G|S). At that point, either the real

game is �nished or only vi is not yet dominated. So the real game �nishes
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at latest with the next move of any player, and the number of moves in the

real game kR satis�es kR 6 kI − 1 + 1. Moreover, in the real game, Staller

played optimally but possibly not Dominator, so kR > γg(G|S). We an

now onlude the proof bringing together all these inequalities into

γg(G|S) 6 kR 6 kI 6 γ′g(G|S) .

�

The seond family of graphs we prove to be no-minus is the family of

dually hordal graphs, see [6℄. Let G be a graph, v one of its verties. A

vertex u in N [v] is a maximum neighbour of v if for all w ∈ N [v], we have

N [w] ⊆ N [u]. A vertex ordering v1, . . . , vn is a maximum neighbourhood

ordering if for eah i 6 n, vi has a maximum neighbour in G[{v1, . . . , vi}]. A
graph is dually hordal if it has a maximum neighbourhood ordering. Note

that forests and interval graphs are dually hordal [35℄.

Theorem 5.9 Dually hordal graphs are no-minus graphs.

Proof. We prove the result by indution on the number of non-dominated

verties. Let G be a dually hordal graph with v1, . . . , vn a maximum neigh-

bourhood ordering of V (G). Let S ⊆ V (G) be a subset of dominated verties

and denote by j the largest index suh that vj is not in S. We suppose by

way of ontradition that G|S is a (k,−), note that neessarily k > 3. Let vi
be a maximum neighbour of vj in G[{v1, . . . , vj}]. Let u be an optimal move

for Staller in G|(S∪N [vi]) and let S′ = S∪N [vi]∪N [u]. By Observation 5.3,

G|(S ∪N [u]) and G|(S ∪N [vi]) are both (k−2,+), so γg(G|S∪N [u]) = k−2
and γ′g(G|S ∪N [vi]) = k − 1. By optimality of u, we get that

k − 1 = γ′g(G|S ∪N [vi]) = γg(G|S′) + 1 .

The vertex u is not a neighbour of vj , or its losed neighbourhood in

G[{v1, . . . , vj}] would be inluded in N [vi] and {vj+1, . . . , vn} ⊆ S, so playing
u would not be legal in G|(S ∪N [vi]). Therefore, by ontinuation priniple

(Theorem 5.1),

γg(G|S ∪N [u]) > γg(G|S′ \ {vj}) .

Moreover, beause all verties at distane at most 2 from vj are dominated

in G|S′
, we get that γg(G|S′ \ {vj}) = γg(G ∪K1|S

′). Now using indution

hypothesis to apply Lemma 5.7, we get

γg(G|S′ \ {vj}) > γg(G|S′) + 1 .

We thus onlude that

k − 2 = γg(G|S ∪N [u]) > γg(G|S′ \ {vj}) > γg(G|S′) + 1 = k − 1,

whih leads to a ontradition. Therefore, G|S is not a minus and this

onludes the proof. �
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5.2 The domination game played on unions of

graphs

5.2.1 Union of no-minus graphs

In this subsetion, we are interested in the possible values that the union of

two no-minus graphs may realise, aording to the realisations of its om-

ponents. We in partiular show that the union of two no-minus graphs is

always a no-minus graph.

We �rst prove a very general result that will allow us to ompute almost

all the bounds obtained later.

Theorem 5.10 Let G1|S and G2|S
′
be two partially dominated graphs and

x be any legal move in G1|S. We have

γg(G1 ∪G2|S ∪ S′) > min

(
γg(G1|S) + γg

dp(G2|S
′)

γg
dp(G1|S) + γg(G2|S

′)

)
(5.1)

γg(G1 ∪G2|S ∪ S′) 6 1 + max

(
γ′g(G1|S ∪N [x]) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S ∪N [x]) + γ′g(G2|S

′)

)
(5.2)

γ′g(G1 ∪G2|S ∪ S′) 6 max

(
γ′g(G1|S) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S) + γ′g(G2|S

′)

)
(5.3)

γ′g(G1 ∪G2|S ∪ S′) > 1 + min

(
γg(G1|S ∪N [x]) + γg

dp(G2|S
′)

γg
dp(G1|S ∪N [x]) + γg(G2|S

′)

)
(5.4)

Proof. To prove all these bounds, we simply desribe what a player an do

by using a strategy of following, i.e. always answering to his opponent moves

in the same graph if possible.

Let us �rst onsider Game 1 in G1 ∪G2|S ∪ S′
and what happens when

Staller adopts the strategy of following. Assume �rst that the game in G1

�nishes before the game in G2. Then Staller is sure with her strategy that

the number of moves in G1 is at least γg(G1|S). However, when G1 �n-

ishes, Staller may be fored to play in G2 if Dominator played the �nal

move in G1. This situation somehow allows Dominator to pass one in G2,

but no more. So we an ensure that the number of moves in G2 is no

less that γg
dp(G2|S

′). Thus, in that ase, the total number of moves is no

less than γg(G1|S) + γg
dp(G2|S

′). If on the other hand the game in G2 �n-

ishes �rst, we get similarly that the number of moves is then no less than

γg
dp(G1|S) + γg(G2|S

′). Sine she does not deide whih game �nishes �rst,

Staller an guarantee that

γg(G1∪G2|S ∪S′) > min
(
γg(G1|S)+γg

dp(G2|S
′), γg

dp(G1|S)+γg(G2|S
′)
)
.

The same arguments in Game 2 with Dominator adopting the strategy of

following ensures that

γ′g(G1∪G2|S∪S′) 6 max
(
γ′g(G1|S)+γ′g

sp
(G2|S

′), γ′g
sp
(G1|S)+γ′g(G2|S

′)
)
.
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Let us ome bak to Game 1. Suppose Dominator plays some vertex x in

V (G1) and then adopts the strategy of following. Then he an ensure that

γg(G1 ∪G2|S ∪ S′) 6 1 + γ′g(G1 ∪G2|S ∪ S′ ∪NG1
[x]) and thus that

γg(G1 ∪G2|S ∪ S′) 6 1 + max

(
γ′g(G1|S ∪N [x]) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S ∪N [x]) + γ′g(G2|S

′)

)
.

The same is true for Staller in Game 2 to obtain Inequality (5.4). �

In the ase of the union of two no-minus graphs, these inequalities allow

us to give rather preise bounds on the possible values realised by the union.

The �rst ase is when one of the omponents is an equal.

Theorem 5.11 Let G1|S and G2|S′
be partially dominated no-minus

graphs. If G1|S is a (k,=) and G2|S
′
is a (ℓ, ⋆) (with ⋆ ∈ {=,+}), then

the disjoint union G1 ∪G2|S ∪ S′
is a (k + ℓ, ⋆).

Proof. We use inequalities from Theorem 5.10. Note that sine G1 and G2

are no-minus graphs, we an apply Proposition 5.6 and get that the Staller-

pass and Dominator-pass games on any partially dominated G1 and G2 is

the same as the orresponding game.

For Game 1, let Dominator hoose an optimal move x in G2|S
′
, for

whih we get γ′g(G2|S
′ ∪N [x]) = ℓ− 1. Applying Inequalities (5.1) and (5.2)

interhanging the role of G1 and G2, we then get that

k + ℓ 6 γg(G1 ∪G2|S ∪ S′) 6 1 + k + ℓ− 1 .

For Game 2, Staller an also hoose an optimal move x in G2|S
′
for whih

γg(G2|S
′ ∪N [x]) = γ′g(G2|S

′)− 1, and applying Inequalities (5.3) and (5.4),

we get that γ′g(G1 ∪G2|S ∪ S′) = γ′g(G1|S) + γ′g(G2|S
′). �

We are now left with the ase where both omponents are plus.

Theorem 5.12 Let G1|S and G2|S
′
be partially dominated no-minus graphs

suh that G1|S is (k,+) and G2|S
′
is (ℓ,+). Then

k + ℓ 6 γg(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 1,

k + ℓ+ 1 6 γ′g(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 2.

In addition, all bounds are tight.

Proof. Similarly as in the proof before, taking x an optimal �rst move for

Dominator in G1|S and applying Inequalities (5.1) and (5.2), we get that

k + ℓ 6 γg(G1 ∪ G2|S ∪ S′) 6 k + ℓ+ 1. Also, taking for x an optimal �rst

move for Staller in G1|S and applying Inequalities (5.3) and (5.4), we get

that k + ℓ+ 1 6 γ′g(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 2.
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a

T3

c
d

e

b

T4 P3 leg

Figure 5.1: The trees T3 and T4, the graph P3 and the leg

We now propose examples showing that these bounds are tight. Denote

by Ti the tree made of a root vertex r of degree i+ 1 adjaent to two leaves

and i − 1 paths of length 2. Figure 5.1 shows the trees T2 and T3. Note

that the domination number of Ti is γ(Ti) = i. For the domination game,

Ti realises (i, i + 1). We laim that for any k, ℓ, γg(Tk ∪ Tℓ) = k + ℓ+ 1.
Note that if x is a leaf adjaent to the degree i + 1 vertex r in some Ti,

then i verties are still needed to dominate Ti|N [x]. Then a strategy for

Staller so that the game does not �nish in less than k + ℓ + 1 moves is to

answer to any move from Dominator in the other tree by suh a leaf (e.g. in

Figure 5.1, answer to Dominator's move in a with b). Then two moves are

played already and still k + ℓ − 1 verties at least are needed to dominate

the graph. The upper bound is already known. Similarly, if k > 2, for
any ℓ, γ′g(Tk ∪ Tℓ) = k + ℓ+ 2. Staller's strategy would be to start on a leaf

adjaent to the root of Tk (e.g. b in Figure 5.1). Then whatever Dominator's

answer (optimally a), Staller an play a seond leaf adjaent to a root (d).
Then either Dominator answers to the seond root (c) and at least k+ ℓ− 2
moves are required to dominate the other verties, or he tries to dominate a

leaf already (say e) and Staller an still play the root (c), leaving k + ℓ− 3
neessary moves after the �ve initial moves.

To prove that the lower bounds are tight, it is enough to onsider the

path on three verties P3 and the leg drawn in Figure 5.1, that is the tree

onsisting in a law whose degree three vertex is attahed to a P3. The path

P3 realizes (1, 2), the leg realizes (3, 4), heking that the union is indeed a

(4, 5) is left to the reader. �

The next orollary diretly follows from the above theorems.

Corollary 5.13 No-minus graphs are losed under disjoint union.

Note that thanks to that orollary, we an extend the result of Theo-

rem 5.8 to all tri-split graphs.

Corollary 5.14 All tri-split graphs are no-minus graphs.

5.2.2 General ase

In this subsetion, we onsider a union of any two graphs.
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Depending on the parity of the length of the game, we an re�ne Theo-

rem 5.10 as follows:

Theorem 5.15 Let G1|S1 and G2|S2 be partially dominated graphs.

• If γg(G1|S1) and γg(G2|S2) are both even, then

γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2) (5.5)

• If γg(G1|S1) is odd and γ′g(G2|S2) is even, then

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2) (5.6)

• If γ′g(G1|S1) and γ′g(G2|S2) are both even, then

γ′g(G1 ∪G2|S1 ∪ S2) ≤ γ′g(G1|S1) + γ′g(G2|S2) (5.7)

• If γ′g(G1|S1) is odd and γg(G2|S2) is even, then

γ′g(G1 ∪G2|S1 ∪ S2) ≥ γ′g(G1|S1) + γg(G2|S2) (5.8)

Proof. The proof is similar to the proof of Theorem 5.10. For inequal-

ity (5.5), let Staller use the strategy of following, assume without loss of

generality that G1 is dominated before G2. If Dominator played opti-

mally in G1, by parity Staller played the last move there and Dominator

ould not pass a move in G2, thus he ould not manage less moves in G2

than γg(G2|S2). Yet Dominator may have played so that one more move

was neessary in G1 in order to be able to pass in G2. Then the num-

ber of moves played in G2 may be only γg
dp(G2|S2), but this is no less

than γg(G2|S2) − 1 and overall, the number of moves is the same. Hene

we have γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2). The same argument

with Dominator using the strategy of following gives inequality (5.7).

Similarly, for inequality (5.6), Let Dominator start with playing an op-

timal move x in G1|S1 and then apply the strategy of following. Then

Staller plays in G1 ∪ G2|(S1 ∪ N [x]) ∪ S2, where γ′g(G1|S1 ∪ N [x]) =
γg(G1|S1)− 1 is even, as well as γ′g(G2|S2). Then by the previous argument,

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2). Inequality (5.8) is obtained

with a similar strategy for Staller. �

Using Theorem 5.10 and 5.15, we argue the 21 di�erent ases, aording

to the type and the parity of eah of the omponents of the union. To simplify

the omputation, we simply propose the following orollary of Theorem 5.10

Corollary 5.16 Let G1|S1 and G2|S2 be two partially dominated graphs.

We have

γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2)− 1 , (5.9)

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2) + 1 , (5.10)

γ′g(G1 ∪G2|S1 ∪ S2) ≤ γ′g(G1|S1) + γ′g(G2|S2) + 1 , (5.11)

γ′g(G1 ∪G2|S1 ∪ S2) ≥ γ′g(G1|S1) + γg(G2|S2)− 1 . (5.12)
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Proof. To prove these inequalities, with simply apply inequalities of The-

orem 5.10 in a general ase. We hoose for the vertex x an optimal move,

getting for example that γ′g(G1|S1 ∪ N [x]) = γg(G1|S1) − 1. We also use

Lemma 5.5 and get for example γg
dp(G2|S2) ≥ γg(G2|S2)− 1. �

We now present the general bounds in Table 5.2, whih should be read as

follows. The �rst two olumns give the types and parities of the omponents

of the union, where e, e1 and e2 denote even numbers and o, o1, and o2 denote
odd numbers. The next two olumns give the bounds on the domination

game numbers of the union. In the last two olumns, we give the inequalities

we use to get these bounds. We add a ∗ to the inequality number when the

inequality is used exhanging G1 and G2.

G1 G2 γg γ′g for γg for γ′g

(o1,−) (o2,+) γg = o1 + o2 − 1 γ′g = o1 + o2 (5.9),(5.6*) (5.12*),(5.7)

(e1,−) (e2,+) γg = e1 + e2 γ′g = e1 + e2 + 1 (5.5),(5.10*) (5.8*),(5.11)

(o1,−) (o2,−) γg = o1 + o2 − 1 γ′g = o1 + o2 − 2 (5.9),(5.6) (5.12),(5.7)

(e1,−) (e2,−) γg = e1 + e2 γ′g = e1 + e2 − 1 (5.5),(5.10) (5.8),(5.11)

(o1,=) (o2,−) γg = o1 + o2 − 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 (5.9),(5.6) (5.12*),(5.11)

(e1,=) (e2,−) γg = e1 + e2 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5.5),(5.10) (5.12),(5.11)

(e,=) (o,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o− 1 (5.9),(5.10) (5.12),(5.7)

(o,=) (e,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o (5.9),(5.10) (5.8),(5.11)

(e,=) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.6*) (5.12*),(5.11)

(o,−) (e,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.10*) (5.12*),(5.11)

(e,−) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.10*) (5.12*),(5.11)

(e,=) (o,=) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.6*) (5.8*),(5.11)

(o,−) (e,−) e+ o− 1 ≤ γg ≤ e+ o e+ o− 2 ≤ γ′g ≤ e+ o− 1 (5.9),(5.10) (5.12),(5.11)

(e1,=) (e2,=) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5.5),(5.10) (5.12),(5.7)

(e1,=) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 2 (5.5),(5.10*) (5.8*),(5.11)

(o,=) (e,+) e+ o− 1 ≤ γg ≤ e+ o+ 1 e+ o ≤ γ′g ≤ e+ o+ 2 (5.9),(5.10*) (5.8),(5.11)

(o1,+) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (5.9),(5.6) (5.12),(5.7)

(e1,+) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 2 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 3 (5.5),(5.10) (5.8),(5.11)

(o1,=) (o2,=) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 + 1 (5.9),(5.10) (5.12),(5.11)

(o1,=) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (5.9),(5.10*) (5.12*),(5.11)

(e,+) (o,+) e+ o− 1 ≤ γg ≤ e+ o+ 2 e+ o ≤ γ′g ≤ e+ o+ 3 (5.9),(5.10) (5.12),(5.11)

Table 5.2: Bounds for general graphs.

Using the inequalities of Theorems 5.10 and 5.15, we get the following

results.

Theorem 5.17 The bounds from Table 5.2 hold.

Note that only in the �rst four ases in Table 5.2 the exat game dom-

ination number as well as the Staller-start game domination number are

determined, while in the next four ases this is the ase for exatly one of

these two numbers. In all other ases, the di�erene between the lower and

upper bound is at least one and at most three.

We managed to tighten all these bounds but �ve, on in�nite families of

graphs.

Reall that the Cartesian produt G�H of two graphs G and H is the
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G1 G2 lower on γg upper on γg lower on γ′g upper on γ′g

(o1,−) (o2,+) C6 ∪ P3 C6 ∪ P3 C6 ∪ P3 C6 ∪ P3

(e1,−) (e2,+) P2�P4 ∪ T2 P2�P4 ∪ T2 P2�P4 ∪ T2 P2�P4 ∪ T2

(o1,−) (o2,−) C6 ∪ C6 C6 ∪ C6 C6 ∪C6 C6 ∪ C6

(e1,−) (e2,−) P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4

(o1,=) (o2,−) K1 ∪ C6 K1 ∪ C6 ? K1 ∪ C6

(e1,=) (e2,−) P8 ∪ P2�P4 sp ∪ P2�P4 P8 ∪ P2�P4 sp ∪ P2�P4

(e,=) (o,−) NE ∪ C6 P8 ∪ C6 P8 ∪ C6 P8 ∪C6

(o,=) (e,−) P10 ∪ P2�P4 ? P10 ∪ P2�P4 P10 ∪ P2�P4

(e,=) (o,+) NE ∪W no-minus NE ∪W no-minus

(o,−) (e,+) C6 ∪BLPK C6 ∪ T4 C6 ∪BLPK C6 ∪ T4

(e,−) (o,+) P2�P4 ∪ P11 P2�P4 ∪ PCs P2�P4 ∪ P11 P2�P4 ∪ PCs

(e,=) (o,=) NE ∪ P6 sp ∪BLCK NE ∪ P6 sp ∪BLCK

(o,−) (e,−) C6 ∪ (3P2�P4) (3C6) ∪ P2�P4 C6 ∪ (3P2�P4) (3C6) ∪ P2�P4

(e1,=) (e2,=) NE ∪NE sp ∪ sp ? sp ∪ sp

(e1,=) (e2,+) no-minus sp ∪ T4 no-minus sp ∪ T4

(o,=) (e,+) CPP ∪BLPK K1 ∪BLP CPP ∪BLPK K1 ∪BLP

(o1,+) (o2,+) PC ∪ PC T5 ∪ T5 PC ∪ PC T5 ∪ T5

(e1,+) (e2,+) BLPK ∪BLPK BLP ∪BLP BLPK ∪BLPK BLP ∪BLP

(o1,=) (o2,=) CPP ∪ CPP ? ? NEsp ∪NEsp

(o1,=) (o2,+) BLCK ∪ PC BLCK ∪ PCs BLCK ∪ PC BLCK ∪ PCs

(e,+) (o,+) BLWK ∪ PC T4 ∪ (C6 ∪ P3) BLWK ∪ PC T4 ∪ (C6 ∪ P3)

Table 5.3: Examples of graphs that tighten bounds.

graph with vertex set V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)} and edge set

E(G�H) = {((u1, v1), (u2, v2))|(u1 = u2 and (v1, v2) ∈ E(H))
or (v1 = v2 and (u1, u2) ∈ E(G))}.

Table 5.3 gives examples of graphs that tighten all but �ve bounds. The

graphs that are not built from paths and yles by disjoint unions and/or

Cartesian produts are represented on Figure 5.4. Examples listed in this

table are small and an be veri�ed by hand or programming. To get bigger

examples, one an just add an even number of isolated verties to one or both

of the omponents. When the bound in general is the same as for no-minus

graphs, we just wrote `no-minus' as we know they yield examples reahing

the bound.

The following graphs with pairs they realise are used in Table 5.3 as

examples that make bounds in Table 5.2 tight.

• PC is (5,+)
• PCs is (3,+)
• sp is (4,=)
• NE is (6,=)
• NEsp is (5,=)
• CPP is (7,=)
• Tk is (k,+)
• BLP = P3 ∪ P2�P4 is (4,+)
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k − 1

Figure 5.4: From top to bottom, left to right: PC, PCs, sp, NE, NEsp, CPP ,
W , Tk

• BLC = P2�P4 ∪ C6 is (6,=)
• BLCK = P2�P4 ∪ C6 ∪K1 is (7,=)
• BLPK = P2�P4 ∪ P3 ∪K1 is (6,+)
• BLWK = P2�P4 ∪W ∪K1 is (8,+)

5.3 Perspetives

In this hapter, we looked at the domination game.

First, we took an interest in no-minus graphs, that are graphs in whih

no player ever gets any advantage passing, no matter whih set of verties is

dominated. We proved that both tri-split graphs and dually hordal graphs

are no-minus graphs. Chordal graphs are another generalisation of split

graphs, interval graphs and forests, so we pose the following onjeture.

Conjeture 5.18 Partially dominated hordal graphs are no-minus graphs.

The lasses of graphs that we proved to be no-minus are reognisable in

polynomial time. Hene the following question is natural.

Question 5.19 Can no-minus graphs be reognised in polynomial time?

Note that a naive algorithm that would onsist in heking the values of

γg and γ′g would not work. First beause no polynomial algorithm is known
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to ompute γg or γ′g. And seond beause we would have to ompute these

values for all sets of initially-dominated verties of the graph, and there are

an exponential number of suh sets.

Then we onsidered the game played on disjoint unions of graphs, where

we bounded the possible values of γg and γ′g. Notie that our results hold

even when the graphs are not onneted, so they an be applied reursively,

though then the di�erene between the lower bound and the upper bound

may inrease. Note that the strategy we propose is not always optimal,

however we think it gives the optimal bound in general.

Conjeture 5.20 All bounds from Table 5.2 are tight.
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Chapter 6

Conlusion

This thesis has examined games under both normal and misère onven-

tion, and even a graph parameter seen as a game.

In Chapter 2, we studied two impartial games under normal onvention.

The �rst is a generalisation of Adjaent Nim, lose to Vertex NimG, but

whih fores the players to lower all the weights to 0. We found a polynomial-

time algorithm that gives the outome of a large lass of positions, and as

our lass is losed under followers, this lets us �nd a strategy for the winning

player. Nevertheless, we did not solve the problem entirely. It would be

interesting to �nd an e�ient algorithm that would solve the general problem

on direted graphs where the self-loops are optional. The problem on direted

graphs with no self-loop is not losed under followers, so we do not think it

is the right problem to look at �rst.

The seond impartial game we studied an be seen as a generalisation

of Nim, as there is a bijetion between Nim positions and orientations of

subdivided stars where all ars are direted away from the enter, but was

atually derived from Toppling Dominoes, through a version where only

paths were onsidered. We found the outome of any position on a onneted

direted graph, and the algorithm is atually able to keep trak of `equivalent'

ars throughout the redution, so it is possible to baktrak any winning ar

from a minimal position to the original direted graph. As the game does

not split in di�erent omponents, we ould be satis�ed with this result, but

it still feels like the game is not solved yet until one �nd a way to give the

Grundy-value of any position. We partially answered this question by giving

a ubi-time algorithm that �nds the Grundy-value of any orientation of a

path. However, it would be interesting to have a more e�ient algorithm

that gives suh Grundy-values, even for orientations of paths only.

In Chapter 3, we studied three partizan games under normal onvention.

The �rst is a generalisation of Timber, that we studied in Chapter 2. We

gave polynomial-time algorithms to �nd the outome of any orientation of

paths with oloured ars, and of any onneted direted graph with ars

oloured blak or white. Notwithstanding, the general problem is far from

solved. Even though the game does not split in di�erent omponents, we

do not know of an e�ient algorithm that would give the outome of any

oloured onneted direted graph. Finding the value of a position, even on

orientations of paths, seems like a hard problem, espeially sine there ould

be many di�erent values.
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The seond partizan game we studied is a oarsening of the �rst (though

it was de�ned earlier). The interest of our study was to haraterise positions

having some values, or prove the existene of some values, on positions on a

single row. We ompletely haraterised the positions on a single row having

value {a|b} with a > b, and provided examples of positions on a single row

having value {a|{b|c}} for a > b > c or {{a|b}|{c|d}} for a > b > c > d. It
would be interesting to omplete the haraterisation of these last two sets

of positions. Other interesting onjetures on the game an be found in [17℄.

The last partizan game we looked at is a olouring game. Though any

position on a grey graph has value 0 or ∗, and the value of other positions is

restrited to numbers and sums of numbers and ∗, �nding the outome of a

position is quite omplex. We gave the outomes of grey positions belonging

to some sublasses of trees, and the outomes of grey ographs. It would be

interesting to �nd an algorithm that would give the outome of any grey tree,

and maybe put it together with the algorithm we propose for grey ographs

to �nd the outome of any distane-hereditary graph.

In Chapter 4, we swithed to the misère onvention. First, we desribed

the misère version of the games we studied earlier. We provided results on

a omplexity level as well as on �nding algorithms that give the outome of

position, and results on reduing the problem to positions that seem simpler.

There are games on whih we did not say muh, but the misère version of

a game is in general harder to solve than its normal version, as highlighted

with Vertex Geography, where one an �nd the normal outome of any

position on an undireted graph G in time O(|E(G)|
√

|V (G)|) whereas �nd-
ing the misère outome of a position, even on planar undireted graphs of

maximum degree 5, is pspae-omplete. In ontrast, we gave a solution

to �nd the misère outome of any LR-Toppling Dominoes position in a

linear time. However, there is still a lot to searh on the general version of

Toppling Dominoes under misère onvention, where we allow grey domi-

noes. The other games we studied are not ompletely solved either, and

ould be subjet to future researh.

Then we looked at misère universes. The �rst we onsider is a well-

known set of games. Under the normal onvention, these games are alled

all-small beause they all are in�nitesimal, that is they are smaller than any

positive number and greater than any negative number. Under the misère

onvention, we gave them a anonial form. However, there is no e�ient

way to ompute this anonial form as it requires to detet dominated and

reversible options, and we do not know of an e�ient way of omparing any

two games. In pratie, though, there are situations where it is possible to

ompare games, and we hope our analysis of games born by day 3 an help

in the endgames of diot positions.

Next, we looked at a seond universe in misère play. Though this universe

is somehow new, it ontains many games that have been studied before. In
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partiular, it ontains the universe of diot games, studied in the previous

setion. We analysed ends and numbers. Ends might appear quite often in

games, but numbers in normal anonial form are less frequent. Nonetheless,

it is still interesting to know there are quite many games admitting an inverse

modulo the dead-ending universe, and that even some games not being of

this kind of sum are equivalent to 0 in this universe.

In Chapter 5, we left ombinatorial games to study the domination game.

We found some lasses of graphs where the analysis should be easier, and

looked at what value the parameter of the disjoint union of two graphs may

have onsidering the values of the parameter of these two graphs and the

proess an be repeated on more than two omponents. It is interesting

to see how this vision from ombinatorial games, seeing the game as a dis-

juntive sum, helps highlighting how interesting no-minus graphs are for the

domination game. We also used the imagination strategy whih, without

being de�ned as a ombinatorial games tool, may remind us of the stealing

strategy argument used to �nd the winning player in some ombinatorial

games. No-minus graphs are interesting beause they are somewhat more

preditable, so it would be nie to be able to haraterise them, or �nd other

lasses of graphs having this property.
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Appendix A

Appendix: Rule sets

• Clobber is a partizan game played on an undireted graph with

verties oloured blak or white. At her turn, Left hooses a white

vertex she olours blak and a blak vertex she removes from the game

provided the two verties were adjaent. At his turn, Right hooses a

blak vertex he olours white and a white vertex he removes from the

game provided the two verties were adjaent.

• Col is a partizan game played on an undireted graph with verties

either unoloured or oloured blak or white. A move of Left onsists

in hoosing an unoloured vertex and olouring it blak, while a move

of Right would be to do the same with the olour white. An extra

ondition is that the partial olouring has to stay proper, that is no

two adjaent verties should have the same olour. Another way of

seeing the game is to play it on the graph of available moves: a position

is an undireted graph with all verties oloured blak, white or grey;

a move of Left is to hoose a blak or grey vertex, remove it from the

game with all its blak oloured neighbours, and hange the olour of

its other neighbours to white; a move of Right is to hoose a white

or grey vertex, remove it from the game with all its white oloured

neighbours, and hange the olour of its other neighbours to blak.

• Domineering is a partizan game played on a square grid, where

some verties might be missing. A move of Left onsists in hoosing

two vertially adjaent verties and remove them from the game, while

a Right move is to hoose two horizontally adjaent verties and remove

them from the game. The game is usually represented with a grid of

squares where players put dominoes without superimposing them.

• Flip the oin is a partizan game played on one or several rows of

oins, eah oin faing either heads or tails. At her turn, Left hooses

a oin faing heads and removes it from the game, �ipping the oins

adjaent to it. At his turn, Right does the same with a oin faing tail.

There exists a variant where the two neighbours of the oin removed

beome adjaent.

• Geography is an impartial game played on a direted graph with a

token on a vertex. There exist two variants of the game: Vertex Ge-

ography and Edge Geography. A move in Vertex Geography

is to slide the token through an ar and delete the vertex on whih

the token was. A move in Edge Geography is to slide the token
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through an ar and delete the edge on whih the token just slid. In

both variants, the game ends when the token is on an isolated vertex.

Geography an also be played on an undireted graph G by seeing it

as a symmetri direted graph where the vertex set remains the same

and the ar set is {(u, v), (v, u)|(u, v) ∈ E(G)}, exept that in the ase

of Edge Geography, going through an edge (u, v) would remove

both the ar (u, v) and the ar (v, u) of the direted version.

• Hakenbush is a partizan game played on a graph with ars

oloured blak, white, or grey, and a speial vertex alled the ground.

At her turn, Left removes a grey or blak edge from the game, and

everything that is no longer onneted to the ground falls down (is

removed from the game). At his turn, Right does the same with a

grey or white edge.

• Hex is a partizan game played on an hexagonal grid. At her turn,

Left plaes a blak piee on an empty vertex, and Right does the same

at his turn with a white piee. The game ends when there is a path

of blak stones onneting the upper-left side to the lower-right side

of the board, or a path of white stone onneting the upper-right side

to the lower-left side of the board.

• Nim is an impartial game played on one or several heaps of tokens.

At their turn, a player removes any positive number of tokens from

one single heap they hoose.

• Otal games are impartial games played on one or several heaps of

tokens. The possible moves of an otal game are given by its otal

ode d0.d1d2 . . ., where di range between 0 and 7. At their move, a

player may remove i tokens from a heap if either the heap is of size i
and di is odd, or if the heap is of size greater than i and di is ongruent
to 2 or 3 modulo 4. They might even split a heap into two non-empty

heap, removing i tokens if di is at least 4. Note that d0 may only have

value 0 or 4.
• Peg Duotaire is an impartial game played on a grid, with pegs

on some verties. On a move, a player hops a peg over another one,

provided they are adjaent, and landing right on the other side of it,

and removes the seond peg from the game.

• Partizan Peg Duotaire is an impartial game played on a square

grid, with pegs on some verties. On her move, Left hops a peg over

another one, provided they are vertially adjaent, and landing right

on the other side of it, and removes the seond peg from the game.

On his move, Right hops a peg over another one, provided they are

horizontally adjaent, and landing right on the other side of it, and

removes the seond peg from the game.

• She loves move, she loves me not is the name of the otal

game 0.3, whih is equivalent to the otal game 0.7.
• Snort is a partizan game played on an undireted graph with verties
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either unoloured or oloured blak or white. A move of Left onsists

in hoosing an unoloured vertex and olouring it blak, while a move

of Right would be to do the same with the olour white. An extra

ondition is that no two adjaent verties should have di�erent olours.

Another way of seeing the game is to play it on the graph of available

moves: a position is an undireted graph with all verties oloured

blak, white or grey; a move of Left is to hoose a blak or grey vertex,

remove it from the game with all its white oloured neighbours, and

hange the olour of its other neighbours to blak; a move of Right

is to hoose a white or grey vertex, remove it from the game with

all its blak oloured neighbours, and hange the olour of its other

neighbours to white.

• Timber is an impartial game played on a direted graph. On a move,

a player hooses an ar (x, y) of the graph and removes it along with all

that is still onneted to the endpoint y in the underlying undireted

graph where the ar (x, y) has already been removed. Another way of

seeing it is to put a vertial domino on every ar of the direted graph,

and onsider that if one domino is toppled, it topples the dominoes in

the diretion it was toppled and reates a hain reation. The diretion

of the ar indiates the diretion in whih the domino an be initially

toppled, but has no inidene on the diretion it is toppled, or on the

fat that it is toppled, if a player has hosen to topple a domino whih

will eventually topple it.

• Timbush is the natural partizan extension of Timber, played on a

direted graph with ars oloured blak, white, or grey. On her move,

Left hooses a blak or grey ar (x, y) of the graph and removes it along

with all that is still onneted to the endpoint y in the underlying

undireted graph. On his move, Right does the same with a white or

grey ar.

• Toppling Dominoes is a partizan game played on one or several

rows of dominoes oloured blak, white, or grey. On her move, Left

hooses a blak or grey domino and topples it with all dominoes (of

the same row) at its left, or with all dominoes (of the same row) at its

right. On his turn, Right does the same with a white or grey domino.

• VertexNim is an impartial game played on a weighted strongly-

onneted direted graph with a token on a vertex. On a move, a

player dereases the weight of the vertex where the token is and slides

the token along a direted edge. When the weight of a vertex v is set

to 0, v is removed from the graph and all the pairs of ars (p, v) and
(v, s) (with p and s not neessarily distint) are replaed by an ar

(p, s).
VertexNim an also be played on a onneted undireted graph G by

seeing it as a symmetri direted graph where the vertex set remains

the same and the ar set is {(u, v), (v, u)|(u, v) ∈ E(G)}.
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• Vertex NimG is an impartial game played on a weighted direted

graph with a token on a vertex. There exist two variants of the game,

the Move then Remove version and the Remove then Move version. In

the Move then Remove version, a player's move is to slide the token

through an ar and then derease the weight of the vertex on whih

they moved the token to. In the Remove then Move version, a player's

move is to derease the weight of the vertex where the token is and

then slide the token through an ar. When the weight of a vertex is set

to 0, the vertex is removed from the game. In the Remove then Move

version, there is a variant where it is still possible to move to verties

of weight 0, ending the game as no move is possible from there.
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Appendix B

Appendix: Omitted proofs

B.1 Proof of Theorem 3.30

Theorem 3.30 If a > b > c are numbers, then aLRcRLb has value{
a
∣∣{b|c}

}
. Moreover, if a > b, then aEcRLb also has value

{
a
∣∣{b|c}

}
.

We ut the proof into two laims, one proving aLRcRLb has value{
a
∣∣{b|c}

}
, the other proving aEcRLb has value

{
a
∣∣{b|c}

}
.

We start by proving aLRcRLb has value

{
a|{b

∣∣c}
}
. We �rst prove some

preliminary lemmas on options of aLRcRLb.

Lemma B.1 Let a, b be numbers suh that a > b. For any Right option bR

obtained from b toppling rightward and any Right option aR obtained from

a toppling leftward, we have aRLRbR > b.

Proof. We prove that Left has a winning strategy in aRLRbR − b whoever
plays �rst. When Left starts, she an move to aR−b, whih is positive. Now

onsider the ase when Right starts, and his possible moves from aRLRbR−b.
If Right plays in −b, we get

• aRLRbR + (−b)R. Reall that sine b is taken in its anonial form,

there is only one Right option to −b, namely (−b)R0
. Here Left an

answer to aR + (−b)R0
, whih is positive.

Consider now Right's possible moves in aRLRbR
. Toppling rightward, Right

an move to:

• (aR)R − b, positive.
• aRL− b, positive as aRL > aR > a.
• aRLR(bR)R − b. Then Left an answer to aR − b, whih is positive.

Toppling leftward, Right an move to:

• (aR)RLRbR− b. Then Left an answer to (aR)R− b, whih is positive.

• bR − b, positive.
• (bR)R − b, positive.

�

Lemma B.2 Let a, b, c be numbers suh that a > b > c. For any Right

option bR
obtained from b toppling rightward, we have aLRcRLbR > {b|c}.

Proof. We prove that Left has a winning strategy in aLRcRLbR − {b|c}
whoever plays �rst. When Left starts, she an move to a − {b|c}, whih is
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positive. Now onsider the ase when Right starts, and his possible moves

from aLRcRLbR − {b|c}. If Right plays in −{b|c}, we get

• aLRcRLbR − b. Then Left an answer to a− b, whih is positive.

Consider now Right's possible moves in aLRcRLbR
. Toppling rightward,

Right an move to:

• aR − {b|c}, positive.
• aL− {b|c}, positive.
• aLRcR − {b|c}, positive as aLRcR > {a|c} > {b|c}.
• aLRc− {b|c}, positive.
• aLRcRL(bR)R−{b|c}. Then Left an answer to (bR)R−{b|c}, whih

is positive by Corollary 3.34

Toppling leftward, Right an move to:

• aRLRcRLbR − {b|c}. Then Left an answer to aR − {b|c}, whih is

positive.

• cRLbR − {b|c}, positive by Lemma 3.39

• cRRLbR − {b|c}. Then Left an answer to cRRLbR − c, whih is

positive by Lemma B.1

• LbR − {b|c}, positive by Corollary 3.34

• (bR)R − {b|c}, positive by Corollary 3.34

�

Lemma B.3 Let a, b, c be numbers suh that a > b > c. For any Left option
aL obtained from a toppling leftward, we have aLLRcRLb < a.

Proof. We prove that Right has a winning strategy in aLLRcRLb − a
whoever plays �rst. When Right starts, he an move to cRLb− a, whih is

negative. Now onsider the ase when Left starts, and her possible moves

from aLLRcRLb− a. If Left plays in −a, we get

• aLLRcRLb+(−a)L0
. Then Right an answer to cRLb+(−a)L0

, whih

is negative.

Consider now Left's possible move in cRLb. Toppling rightward, Left an

move to:

• (aL)L − a, negative.
• aL − a, negative.
• aLLRcL − a. Then Right an answer to cL − a, whih is negative.

• aLLRcR− a. Then Right an answer to cR− a, whih is negative.

• aLLRcRLbL − a. Then Right an answer to aLLRc − a, whih is

negative by Lemma 3.35.

Toppling leftward, Left an move to:

• (aL)LLRcRLb − a. Then Right an answer to cRLb − a, whih is

negative.

• RcRLb− a, negative.
• cLRLb− a. Then Right an answer to cL − a, whih is negative.
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• b− a, negative.
• bL − a, negative.

�

Lemma B.4 Let a, b, c be numbers suh that a > b > c. For any Left option
bL

obtained from b toppling rightward, we have cRLbL <
{
a|{b

∣∣c}
}
.

Proof. We prove that Right has a winning strategy in cRLbL −
{
a|{b

∣∣c}
}

whoever plays �rst. When Right starts, he an move to c−
{
a|{b

∣∣c}
}
, whih

is negative. Now onsider the ase when Left starts, and her possible moves

from cRLbL −
{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get

• cRLbL − {b|c}, negative by Lemma 3.40.

Consider now Right's possible moves in cRLbL
. Toppling rightward, Left

an move to:

• cL −
{
a|{b

∣∣c}
}
. Then Right an answer to cL − a, whih is negative.

• cR−
{
a|{b

∣∣c}
}
. Then Right an answer to cR− a, whih is negative.

• cRL(bL)L−
{
a|{b

∣∣c}
}
. Then Right an answer to cRL(bL)L−a, whih

is negative by Lemma 3.35.

Toppling leftward, Left an move to:

• cLRLbL −
{
a|{b

∣∣c}
}
. Then Right an answer to cLRLbL − a, whih

is negative by Lemma B.1.

• bL −
{
a|{b

∣∣c}
}
. Then Right an answer to bL − a, whih is negative.

• (bL)L −
{
a|{b

∣∣c}
}
. Then Right an answer to (bL)L − a, whih is

negative.

�

We an now prove the following laim.

Claim B.5 Let a, b, c be numbers suh that a > b > c. We have

aLRcRLb =
{
a|{b

∣∣c}
}
.

Proof. We prove that the seond player has a winning strategy in

aLRcRLb−
{
a|{b

∣∣c}
}
. Consider �rst the ase where Right starts and his

possible moves from aLRcRLb −
{
a|{b

∣∣c}
}
. If Right plays in −

{
a|{b

∣∣c}
}
,

we get

• aLRcRLb− a. Then Left an answer to a− a whih has value 0.

Consider now Right's possible moves in aLRcRLb. Toppling leftward, Right
an move to:

• aRLRcRLb −
{
a|{b

∣∣c}
}
. Then Left an answer to aR −

{
a|{b

∣∣c}
}
,

whih is positive.

• cRLb−
{
a|{b

∣∣c}
}
. Then Left an answer to cRLb− {b|c} whih has

value 0.
• cRRLb−

{
a|{b

∣∣c}
}
. Then Left an answer to cRRLb− {b|c}, whih

is positive by Lemma 3.40.
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• Lb−
{
a|{b

∣∣c}
}
. Then Left an answer to Lb−{b|c}, whih is positive

by Corollary 3.34.

• bR−
{
a|{b

∣∣c}
}
. Then Left an answer to bR−{b|c}, whih is positive

by Corollary 3.34.

Toppling rightward, Right an move to:

• aR −
{
a|{b

∣∣c}
}
, positive.

• aL−
{
a|{b

∣∣c}
}
, positive.

• aLRcR −
{
a|{b

∣∣c}
}
. Then Left an answer to aLRcR − {b|c}, whih

is positive by Lemma 3.40.

• aLRc −
{
a|{b

∣∣c}
}
. Then Left an answer to aLRc − {b|c}, whih is

positive if a > b, and has value 0 if a = b.
• aLRcRLbR−

{
a|{b

∣∣c}
}
. Then Left an answer to aLRcRLbR−{b|c},

whih is positive when a > b by Lemma B.2, or to bR −
{
a|{b

∣∣c}
}
,

whih is positive when a = b.

Now onsider the ase where Left starts and her possible moves from

aLRcRLb−
{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get

• aLRcRLb−{b|c}. Then Right an answer to cRLb−{b|c} whih has

value 0.

Consider now Left's possible move in aLRcRLb. Toppling rightward, Left

an move to:

• aLRcRLbL−
{
a|{b

∣∣c}
}
. Then Right an answer to cRLbL−

{
a|{b

∣∣c}
}
,

whih is negative by Lemma B.4.

• aLRcR−
{
a|{b

∣∣c}
}
. Then Right an answer to cR−

{
a|{b

∣∣c}
}
, whih

is negative.

• aLRcL −
{
a|{b

∣∣c}
}
. Then Right an answer to cL −

{
a|{b

∣∣c}
}
, whih

is negative.

• a−
{
a|{b

∣∣c}
}
. Then Right an answer to a− a whih has value 0.

• aL −
{
a|{b

∣∣c}
}
. Then Right an answer to aL − a, whih is negative.

Toppling leftward, Left an move to:

• bL −
{
a|{b

∣∣c}
}
. Then Right an answer to bL − a, whih is negative.

• b−
{
a|{b

∣∣c}
}
. Then Right an answer to b− a, whih is negative.

• cLRLb−
{
a|{b

∣∣c}
}
. Then Right an answer to cL −

{
a|{b

∣∣c}
}
, whih

is negative.

• RcRLb−
{
a|{b

∣∣c}
}
. Then Right an answer to Rc−

{
a|{b

∣∣c}
}
, whih

is negative.

• aLLRcRLb −
{
a|{b

∣∣c}
}
. Then Right an answer to aLLRcRLb − a,

whih is negative by Lemma B.3 when a > b, or to aLLRc−
{
a|{b

∣∣c}
}
,

whih is negative by Lemma B.4 when a = b.

�

As an example, here is a representation of

{
− 1|{−7

4 | − 2}
}
:
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We now prove that aEcRLb has value

{
a|{b

∣∣c}
}
. Again, we �rst prove

some preliminary lemmas on options of aEcRLb.

Lemma B.6 Let a, b, c be numbers suh that a > b > c. For any Right

option bR
obtained from b toppling rightward, we have aEcRLbR > {b|c}.

Proof. We prove that Left has a winning strategy in aEcRLbR − {b|c}
whoever plays �rst. When Left starts, she an move to bR − {b|c}, whih
is positive by Corollary 3.34. Now onsider the ase when Right starts, and

his possible moves from aEcRLbR − {b|c}. If Right plays in −{b|c}, we get

• aEcRLbR − b. Then Left an answer to a− b, whih is positive.

Consider now Right's possible moves in aEcRLbR
. Toppling rightward,

Right an move to:

• aR − {b|c}, positive.
• a− {b|c}, positive.
• aEcR − {b|c}. Then Left an answer to a− {b|c}, whih is positive.

• aEc− {b|c}, positive.
• aEcRL(bR)R − {b|c}. Then Left an answer to (bR)R − {b|c}, whih

is positive by Corollary 3.34.

Toppling leftward, Right an move to:

• aREcRLbR − {b|c}. Then Left an answer to aR − {b|c}, whih is

positive.

• cRLbR −{b|c}. Then Left an answer to bR −{b|c}, whih is positive

by Corollary 3.34.

• cRRLbR−{b|c}. Then Left an answer to bR−{b|c}, whih is positive

by Corollary 3.34.

• LbR − {b|c}, positive by Corollary 3.34.

• (bR)R − {b|c}, positive by Corollary 3.34.

�

Lemma B.7 Let a, b, c be numbers suh that a > b > c. For any Left option
aL obtained from a toppling leftward, we have aLEcRLb < a.

Proof. We prove that Right has a winning strategy in aLEcRLb−a whoever
plays �rst. When Right starts, he an move to aL−a, whih is negative. Now
onsider the ase when Left starts, and her possible moves from aLEcRLb−a.
If Left plays in −a, we get

• aLEcRLb+ (−a)L. Then Right an answer to cRLb+ (−a)L, whih
is negative.

Consider now Left's possible moves in aLEcRLb. Toppling rightward, Left

an move to:

• (aL)L − a, negative.
• aL − a, negative.
• aLEcL − a. Then Right an answer to cL − a, whih is negative.
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• aLEcR− a. Then Right an answer to cR− a, whih is negative.

• aLEcRLbL − a. Then Right an answer to aL − a, whih is negative.

Toppling leftward, Left an move to:

• (aL)LEcRLb − a. Then Right an answer to cRLb − a, whih is

negative.

• cRLb− a, negative.
• cLRLb− a. Then Right an answer to cL − a, whih is negative.

• b− a, negative.
• bL − a, negative.

�

We an now prove the following laim.

Claim B.8 Let a, b be numbers suh that a > b > c. We have

aEcRLb =
{
a|{b

∣∣c}
}
.

Proof. We prove that the seond player has a wining strategy in

aEcRLb−
{
a|{b

∣∣c}
}
. Consider �rst the ase where Right starts and his

possible moves from aEcRLb−
{
a|{b

∣∣c}
}
. If Right plays in −

{
a|{b

∣∣c}
}
, we

get

• aLRcRLb− a. Then Left an answer to a− a whih has value 0.

Consider now Right's possible moves in aEcRLb. Toppling leftward, Right

an move to:

• aREcRLb−
{
a|{b

∣∣c}
}
. Then Left an answer to aR−

{
a|{b

∣∣c}
}
, whih

is positive.

• cRLb−
{
a|{b

∣∣c}
}
. Then Left an answer to cRLb− {b|c} whih has

value 0.
• cRRLb−

{
a|{b

∣∣c}
}
. Then Left an answer to cRRLb−{b|c} whih is

positive by Lemma 3.40.

• Lb−
{
a|{b

∣∣c}
}
. Then Left an answer to Lb−{b|c}, whih is positive

by Corollary 3.34.

• bR−
{
a|{b

∣∣c}
}
. Then Left an answer to bR−{b|c}, whih is positive

by Corollary 3.34.

Toppling rightward, Right an move to:

• aR −
{
a|{b

∣∣c}
}
, positive.

• a−
{
a|{b

∣∣c}
}
, positive.

• aEcR −
{
a|{b

∣∣c}
}
. Then Left an answer to aEcR − {b|c}, whih is

positive by Lemma 3.42.

• aEc −
{
a|{b

∣∣c}
}
. Then Left an answer to aEc − {b|c}, whih is

positive.

• aEcRLbR −
{
a|{b

∣∣c}
}
. Then Left an answer to aEcRLbR − {b|c},

whih is positive by Lemma B.6.

Now onsider the ase where Left starts and her possible moves from

aEcRLb−
{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get
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• aEcRLb − {b|c}. Then Right an answer to cRLb − {b|c} whih has

value 0.

Consider now Left's possible move in aEcRLb. Toppling rightward, Left an
move to:

• aEcRLbL−
{
a|{b

∣∣c}
}
. Then Right an answer to cRLbL−

{
a|{b

∣∣c}
}
,

whih is negative by Lemma B.4.

• aEcR −
{
a|{b

∣∣c}
}
. Then Right an answer to cR −

{
a|{b

∣∣c}
}
, whih

is negative.

• aEcL−
{
a|{b

∣∣c}
}
. Then Right an answer to cL−

{
a|{b

∣∣c}
}
, whih is

negative.

• a−
{
a|{b

∣∣c}
}
. Then Right an answer to a− a whih has value 0.

• aL −
{
a|{b

∣∣c}
}
. Then Right an answer to aL − a, whih is negative.

Toppling leftward, Left an move to:

• bL −
{
a|{b

∣∣c}
}
. Then Right an answer to bL − a, whih is negative.

• b−
{
a|{b

∣∣c}
}
. Then Right an answer to b− a, whih is negative.

• cLRLb−
{
a|{b

∣∣c}
}
. Then Right an answer to cL −

{
a|{b

∣∣c}
}
, whih

is negative.

• cRLb−
{
a|{b

∣∣c}
}
. Then Right an answer to c−

{
a|{b

∣∣c}
}
, whih is

negative.

• aLEcRLb−
{
a|{b

∣∣c}
}
. Then Right an answer to aLEcRLb−a, whih

is negative by Lemma B.7.

�

As an example, here is a representation of

{
3|{1| − 3

2}
}
:

B.2 Proof of Theorem 3.31

Theorem 3.31 If a > b > c > d are numbers, then both bRLaLRdRLc
and bRLaEdRLc have value

{
{a|b}

∣∣{c|d}
}
.

We ut the proof into two laims, one proving bRLaLRdRLc has value{
{a|b}

∣∣{c|d}
}
, the other proving bRLaEdRLc has value

{
{a|b}

∣∣{c|d}
}
.

We start by proving bRLaLRdRLc has value

{
{a|b}

∣∣{c|d}
}
. We �rst

prove some preliminary lemmas on options of bRLaLRdRLc.

Lemma B.9 Let a, b, c, d be numbers suh that a > b > c > d.
For any Right option bR

obtained from b toppling leftward, we have

bRRLa >
{
{a|b}

∣∣{c|d}
}
.

Proof. We prove Left has a winning strategy in bRRLa −
{
{a|b}

∣∣{c|d}
}

whoever plays �rst. When Left starts, she an move to bRRLa − {c|d},
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whih is positive by Lemma 3.40. Now onsider the ase when Right starts,

and his possible moves from bRRLa −
{
{a|b}

∣∣{c|d}
}
. If Right plays in

−
{
{a|b}

∣∣{c|d}
}
, we get

• bRRLa− {a|b}, positive by Lemma 3.40.

Consider now Right's possible moves in bRRLa. Toppling rightward, Right

an move to:

• (bR)R−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to (bR)R−{c|d}, whih

is positive.

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to bR − {c|d}, whih is

positive.

• bRRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to aR−

{
{a|b}

∣∣{c|d}
}
,

whih is positive.

Toppling leftward, Right an move to:

• (bR)RRLa−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to a−

{
{a|b}

∣∣{c|d}
}
,

whih is positive.

• La−
{
{a|b}

∣∣{c|d}
}
, positive.

• aR −
{
{a|b}

∣∣{c|d}
}
, positive.

�

Lemma B.10 Let a, b, c, d be numbers suh that a > b > c > d.
For any Right option dR

obtained from d toppling rightward, we have

bRLaLRdR > {c|d}.

Proof. We prove that Left has a winning strategy in bRLaLRdR − {c|d}
whoever plays �rst. When Left starts, she an move to bRLa−{c|d}, whih
is positive. Now onsider the ase when Right starts, and his possible moves

from bRLaLRdR − {c|d}. If Right plays in −{c|d}, we get

• bRLaLRdR− c. Then Left an answer to bRLa− c, whih is positive.

Consider now Right's possible moves in bRLaLRdR
. Toppling rightward,

Right an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR−{c|d}. Then Left an answer to aR−{c|d}, whih is positive.

• bRLaL−{c|d}. Then Left an answer to aL−{c|d}, whih is positive.

• bRLaLR(dR)R−{c|d}. Then Left an answer to bRLa−{c|d}, whih
is positive.

Toppling leftward, Right an move to:

• bRRLaLRdR−{c|d}. Then Left an answer to bRRLa−{c|d}, whih
is positive.

• LaLRdR−{c|d}. Then Left an answer to La−{c|d}, whih is positive.
• aRLRdR−{c|d}. Then Left an answer to aR−{c|d}, whih is positive.
• dR − {c|d}. Then Left an answer to dR − d, whih is positive.

• (dR)R − {c|d}. Then Left an answer to (dR)R − d, whih is positive.
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�

Lemma B.11 Let a, b, c, d be numbers suh that a > b > c > d.
For any Right option cR obtained from c toppling rightward, we have

bRLaLRdRLcR > {c|d}.

Proof. We prove that Left has a winning strategy in bRLaLRdRLcR−{c|d}
whoever plays �rst. When Left starts, she an move to bRLa−{c|d}, whih
is positive. Now onsider the ase when Right starts, and his possible moves

from bRLaLRdRLcR − {c|d}. If Right plays in −{c|d}, we get

• bRLaLRdRLcR − c. Then Left an answer to bRLa − c, whih is

positive.

Consider now Right's possible moves in bRLaLRdRLcR. Toppling right-

ward, Right an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive.
• bRLaL− {c|d}, positive.
• bRLaLRdR −{c|d}. Then Left an answer to bRLa−{c|d}, whih is

positive.

• bRLaLRd− {c|d}, positive.
• bRLaLRdRL(cR)R − {c|d}. Then Left an answer to bRLa− {c|d},

whih is positive.

Toppling leftward, Right an move to:

• bRRLaLRdRLcR − {c|d}. Then Left an answer to bRRLa − {c|d},
whih is positive as bRRLa > {a|b}.

• LaLRdRLcR − {c|d}. Then Left an answer to La − {c|d}, whih is

positive.

• aRLRdRLcR − {c|d}. Then Left an answer to aR − {c|d}, whih is

positive.

• dRLcR − {c|d}, positive by Lemma 3.39.

• dRRLcR−{c|d}. Then Left an answer to cR−{c|d}, whih is positive

by Corollary 3.34.

• LcR − {c|d}, positive by Corollary 3.34.

• (cR)R − {c|d}, positive by Corollary 3.34.

�

We an now prove the following laim.

Claim B.12 Let a, b, c, d be numbers suh that a > b > c > d. We have

bRLaLRdRLc =
{
{a|b}

∣∣{c|d}
}
.

Proof. To prove that bRLaLRdRLc =
{
{a|b}

∣∣{c|d}
}
, we prove that the

seond player has a winning strategy in bRLaLRdRLc −
{
{a|b}

∣∣{c|d}
}
.
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Without loss of generality, we may assume Right starts the game, and on-

sider his possible moves from bRLaLRdRLc−
{
{a|b}

∣∣{c|d}
}
. If Right plays

in −
{
{a|b}

∣∣{c|d}
}
, we get

• bRLaLRdRLc− {a|b}. Then Left an answer to bRLa− {a|b} = 0.

Consider now Right's possible moves in bRLaLRdRLc. Toppling rightward,
Right an move to:

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to bR − {c|d}, whih is

positive.

• b−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to b−{c|d}, whih is positive.

• bRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to aR−

{
{a|b}

∣∣{c|d}
}
,

whih is positive.

• bRLaL−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to aL−

{
{a|b}

∣∣{c|d}
}
,

whih is positive.

• bRLaLRdR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

bRLaLRdR − {c|d}, whih is positive by Lemma B.10.

• bRLaLRd −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

bRLaLRd− {c|d}, whih is positive.

• bRLaLRdRLcR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

bRLaLRdRLcR − {c|d}, whih is positive by Lemma B.11.

Toppling leftward, Right an move to:

• bRRLaLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

bRRLa−
{
{a|b}

∣∣{c|d}
}
, whih is positive by Lemma B.9.

• LaLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

La−
{
{a|b}

∣∣{c|d}
}
, whih is positive.

• aRLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

aR −
{
{a|b}

∣∣{c|d}
}
, whih is positive.

• dRLc−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to dRLc− {c|d} whih

has value 0.
• dRRLc −

{
{a|b}

∣∣{c|d}
}
. Then Left an answer to dRRLc − {c|d},

whih is positive by Lemma 3.40.

• Lc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to Lc − {c|d}, whih is

positive by Corollary 3.34.

• cR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to cR − {c|d}, whih is

positive by Corollary 3.34.

�

As an example, here is a representation of

{
{1|1}

∣∣{1
2 |0}

}
:

We now prove bRLaEdRLc has value

{
{a|b}

∣∣{c|d}
}
. Again, we �rst

prove some preliminary lemmas on options of bRLaEdRLc.
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Lemma B.13 Let a, b, c, d be numbers suh that a > b > c > d.
For any Right option dR

obtained from d toppling rightward, we have

bRLaEdR > {c|d}.

Proof. We prove Left has a winning strategy in bRLaEdR −{c|d} whoever

plays �rst. When Left starts, she an move to bRLa − {c|d}, whih is

positive. Now onsider the ase when Right starts, and his possible moves

from bRLaEdR − {c|d}. If Right plays in −{c|d}, we get

• bRLaEdR − c. Then Left an answer to bRLa− c, whih is positive.

Consider now Right's possible moves in bRLaEdR
. Toppling rigtward, Right

an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive as bRLaR > {a|b} > {c|d}.
• bRLa− {c|d}, positive.
• bRLaE(dR)R − {c|d}. Then Left an answer to bRLa− {c|d}, whih

is positive.

Toppling leftward, Right an move to:

• bRRLaEdR − {c|d}. Then Left an answer to bRRLa− {c|d}, whih
is positive.

• LaEdR−{c|d}. Then Left an answer to La−{c|d}, whih is positive.

• aREdR−{c|d}. Then Left an answer to aR−{c|d}, whih is positive.

• dR − {c|d}. Then Left an answer to dR − d, whih is positive.

• (dR)R − {c|d}. Then Left an answer to (dR)R − d, whih is positive.

�

Lemma B.14 Let a, b, c, d be numbers suh that a > b > c > d.
For any Right option cR obtained from c toppling rightward, we have

bRLaEdRLcR > {c|d}.

Proof. We prove Left has a winning strategy in bRLaEdRLcR − {c|d}
whoever plays �rst. When Left starts, she an move to bRLa−{c|d}, whih
is positive. Now onsider the ase when Right starts, and his possible moves

from bRLaEdRLcR − {c|d}. If Right plays in −{c|d}, we get

• bRLaEdRLcR − c. Then Left an answer to bRLa − c, whih is

positive.

Consider now Right's possible moves in bRLaEdRLcR. Toppling rightward,
Right an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive as bRLaR > {a|b} > {c|d}.
• bRLa− {c|d}, positive.
• bRLaEdR − {c|d}. Then Left an answer to bRLa − {c|d}, whih is

positive.
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• bRLaEd− {c|d}, positive.
• bRLaEdRL(cR)R−{c|d}. Then Left an answer to cR−{c|d}, whih

is positive by Corollary 3.34.

Toppling leftward, Right an move to:

• bRRLaEdRLcR − {c|d}. Then Left an answer to bRRLa − {c|d},
whih is positive.

• LaEdRLcR − {c|d}, positive by Lemma B.6.

• aREdRLcR − {c|d}. Then Left an answer to aR − {c|d}, whih is

positive.

• dRLcR − {c|d}, positive by Lemma 3.39.

• dRRLcR−{c|d}. Then Left an answer to cR−{c|d}, whih is positive

by Corollary 3.34.

• LcR − {c|d}, positive by Corollary 3.34.

• (cR)R − {c|d}, positive by Corollary 3.34.

�

We an now prove the following laim.

Claim B.15 Let a, b, c, d be numbers suh that a > b > c > d. We have

bRLaEdRLc =
{
{a|b}

∣∣{c|d}
}
.

Proof. To prove that bRLaEdRLc =
{
{a|b}

∣∣{c|d}
}
, we prove that the se-

ond player has a winning strategy in bRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. With-

out loss of generality, we may assume Right starts the game, and onsider

his possible moves from bRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. If Right plays in

−
{
{a|b}

∣∣{c|d}
}
, we get

• bRLaEdRLc − {a|b}. Then Left an answer to bRLa − {a|b} whih

has value 0.

Consider now Right's possible move in bRLaEdRLc. Toppling rightward,

Right an move to:

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to bR − {c|d}, whih is

positive.

• b−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to b−{c|d}, whih is positive.

• bRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to aR−

{
{a|b}

∣∣{c|d}
}
,

whih is positive.

• bRLa−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to bRLa−{c|d}, whih

is positive.

• bRLaEdR−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to bRLaEdR−{c|d},

whih is positive by Lemma B.13.

• bRLaEd−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to bRLaEd−{c|d},

whih is positive.

• bRLaEdRLcR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

bRLaEdRLcR − {c|d}, whih is positive by Lemma B.14.

Toppling leftward, Right an move to:
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• bRRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

bRRLa−
{
{a|b}

∣∣{c|d}
}
, whih is positive by Lemma B.9.

• LaEdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

La−
{
{a|b}

∣∣{c|d}
}
, whih is positive.

• aREdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to

aR −
{
{a|b}

∣∣{c|d}
}
, whih is positive.

• dRLc−
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to dRLc− {c|d} whih

has value 0.
• dRRLc −

{
{a|b}

∣∣{c|d}
}
. Then Left an answer to dRRLc − {c|d},

whih is positive by Lemma 3.40.

• Lc −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to Lc − {c|d}, whih is

positive by Corollary 3.34.

• cR −
{
{a|b}

∣∣{c|d}
}
. Then Left an answer to cR − {c|d}, whih is

positive by Corollary 3.34.

�

As an example, here is a representation of

{
{5
2 |1}

∣∣{−1
4 | −

1
2}
}
:

B.3 Proof of Lemma 3.80

Lemma 3.80

1. ∀n > 1, x2nB ≡+ 3
4 and x2n−1B ≡+ 1

2 .

2. ∀n > 0, Bx2nB ≡+ 1 and Bx2n+1B ≡+ 3
2 .

3. ∀n > 0, Bx2nW ≡+ 0 and Bx2n+1W ≡+ ∗.

4. ∀n > 0,m > 0, x2nBx2mB >+ 1, x2n+1Bx2m+1B >+ 1,
x2n+1Bx2mB >+ 3

4 and x2nBx2m+1B >+ 3
4 .

5. ∀n > 0,m > 0, x2nBx2mW >+ −1
4 , x

2n+1Bx2m+1W >+ −1
4 ,

x2n+1Bx2mW >+ −1
2 and x2nBx2m+1W >+ −1

2 .

6. ∀n > 0,m > 0, Bx2nBx2mB >+ 3
2 , Bx2n+1Bx2m+1B >+ 3

2 ,

Bx2n+1Bx2mB >+ 3
2 and Bx2nBx2m+1B >+ 3

2 .

7. ∀n > 0,m > 0, Bx2nBx2mW >+ 0, Bx2n+1Bx2m+1W >+ 0,
Bx2n+1Bx2mW >+ 1

2 and Bx2nBx2m+1W >+ 1
2 .

Proof. We show the results by indution on the number of verties of the

graph.

We start with 1. First onsider Left plays �rst, and all her possible moves

from x2nB. She an move to:
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• x2n−1WB, whih has value x2n−1W +B, having value

1
2 by indution.

• W + oWx2n−2B, having value at most W + x2n−1B whih is negative

by indution.

• xiWo+W +oWx2n−i−3B, having value at most xi+1+W +x2n−i−2B
whih is negative by indution.

• x2n−2Wo+W , having value at most x2n−1 +W whih is negative by

indution.

• xiWx2n−i−1B, whih has value at most

1
2 by indution.

• x2n−1Wo, whih has value at most x2n, having value 0.

Now onsider Right plays �rst, and all his possible moves from x2nB. He

an move to:

• x2n−1BB, whih has value x2n−1 +B having value 1 or 1∗.
• B + oBx2n−2B, having value at least B + x2n−1B whih has value

3
2 .

• xiBo+ B + oBx2n−i−3B, having value at least xi+1 + B + x2n−i−2B
whih has value more than 1.

• x2n−2Bo+B+B, having value at least x2n−1+B+B whih has value

2 or 2∗.
• xiBx2n−i−1B, whih has value more than

3
4 by indution.

Now onsider Left plays �rst, and all her possible moves from x2n−1B.

She an move to:

• x2n−2WB, whih has value

1
4 by indution.

• W + oWx2n−3B, having value at most W +x2n−2B whih is negative.

• xiWo+W +oWx2n−i−4B, having value at most xi+1+W +x2n−i−3B
whih is negative.

• x2n−3Wo+W , having value at most x2n−2 +W whih is negative.

• xiWx2n−i−2B, whih has value at most

1
4 by indution.

• x2n−2Wo, whih has value at most x2n−1
, having value 0 or ∗.

Now onsider Right plays �rst, and all his possible moves from x2n−1B. He

an move to:

• x2n−2BB, whih has value 1.
• B + oBx2n−3B, having value at least B + x2n−2B whih has value

7
4 .

• xiBo+ B + oBx2n−i−4B, having value at least xi+1 + B + x2n−i−3B
whih has value more than 1.

• x2n−3Bo+B+B, having value at least x2n−2+B+B whih has value

2.
• xiBx2n−i−2B, whih has value at least 1 by indution.

We now prove 2. As BB ≡+ 1 and BxB ≡+ 3
2 has been established

earlier, we an onsider n > 1.
First onsider Left plays �rst, and all her possible moves from Bx2nB.

She an move to:

• oWx2n−1B, having value at most x2nB whih has value

3
4 .

• BxiWo + W + oWx2n−i−3B, whih has value at most

Bxi+1 +W + x2n−i−2B, having value at most

1
4 .
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• BWx2n−1B whih has value 1∗.
• BxiWx2n−i−1B. Without loss of generality, we may assume i is odd.

Then Right an answer to Bxi−1BWx2n−i−1B, having value 1, and
proving that BxiWx2n−i−1B has a value that is not 1 or more.

Now onsider Right plays �rst, and all his possible moves from Bx2nB. He

an move to:

• B+B+ oBx2n−2B, whih has value at least B+B+x2n−1B, having

value

5
2 .

• BxiBo + B + oBx2n−i−3B, whih has value at least

Bxi+1 +B + x2n−i−2B, having value at least

9
4 .

• BBx2n−1B whih has value

3
2 .

• BxiBx2n−1B whih has value at least

3
2 .

Now onsider Left plays �rst, and all her possible moves from Bx2n+1B. She

an move to:

• oWx2nB, having value at most x2n+1B whih has value

1
2 .

• W +oWx2n−1B, whih has value at most W +x2nB having value −1
4 .

• BxiWo + W + oWx2n−i−2B, whih has value at most

Bxi+1 +W + x2n−i−1B, having value at most

1
2 .

• BWx2nB whih has value 1.
• BxiWx2n−iB. Then Right an answer to Bxi−1BWx2n−iB, having

value 1∗ or

3
2 , and proving that BxiWx2n−iB has a value that is not

3
2 or more.

Now onsider Right plays �rst, and all his possible moves from Bx2n+1B.

He an move to:

• B + B + oBx2n−1B, whih has value at least B + B + x2nB, having

value

11
4 .

• BxiBo + B + oBx2n−i−2B, whih has value at least

Bxi+1 +B + x2n−i−1B, having value at least 2.
• BBx2nB whih has value

7
4 .

• BxiBx2n−iB whih has value more than

3
2 .

We now prove 3. Bx2nW ≡+ 0 follows from Theorem 3.51. From

Bx2n+1W , Left an move to BWx2nW having value 0, and Right an move

to Bx2nBW having value 0.
We now prove 4. If m = 0, x2nBx2mB has value 1 and x2n+1Bx2mB has

value 1 or 1∗, hene for these two ases, we may onsider m > 1. If n = 0,
x2nBx2mB has value 1 and x2nBx2m+1B has value

3
2 , hene for these two

ases, we may onsider n > 1. Consider Right plays �rst, and his possible

moves from x2nBx2mB − 1. He an move to:

• x2nBx2mB. Then Left an answer to x2nBWx2m−1B, whih has value

3
4∗.

• B +Bx2n−2Bx2mB − 1, having value more than

3
2 .

• xiBo + B + oBx2n−i−3Bx2mB − 1, whih has value at least

xi+1 +B + x2n−i−2Bx2mB − 1 having value more than

3
4 .
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• x2n−2Bo + B + Bx2mB − 1, whih has value at least

x2n−1 +B +Bx2mB − 1, having value 1 or 1∗.
• x2nB + B + oBx2m−2B − 1, whih has value at least

x2nB +B + x2m−1B − 1, having value

5
4 .

• x2nBxiBo + B + oBx2m−i−3B − 1, whih has value at least

x2noxi+1 +B + x2m−i−2B − 1, having value at least

1
2 or

1
2∗.

• x2nBx2m−2Bo + B + B − 1, whih has value at least

x2nox2m−1 +B +B − 1, having value 1 or 1∗.
• Bx2n−1Bx2mB − 1, having value at least

1
2 .

• xiBx2n−i−1Bx2mB − 1. Then Left an answer to

xiBWx2n−i−2Bx2mB − 1, having value at least 0 when i is

odd, or to xi−1WBx2n−i−1Bx2mB − 1, having value at least 0 when

i is even.
• x2n−1BBx2mB − 1, having value at least x2n−1B + x2mB − 1, whih

has value

1
4 .

• x2nBxiBx2m−i−1B − 1. Then Left an answer to

x2n−1WBxiBx2m−i−1B − 1, whih has value at least 0.

Consider Right plays �rst, and his possible moves from x2n+1Bx2m+1B − 1.
He an move to:

• x2n+1Bx2m+1B. Then Left an answer to x2n+1BWx2mB, whih has

value

1
2 .

• B +Bx2n−1Bx2m+1B − 1, having value more than

3
2 .

• xiBo + B + oBx2n−i−2Bx2m+1B − 1, whih has value at least

xi+1 +B + x2n−i−1Bx2m+1B − 1 having value more than

3
4 .

• x2n−1Bo + B + Bx2m+1B − 1, whih has value at least

x2n +B +Bx2m+1B − 1, having value

3
2 .

• x2n+1B + B + oBx2m−1B − 1, whih has value at least

x2n+1B +B + x2mB − 1, having value

5
4 .

• x2n+1BxiBo + B + oBx2m−i−2B − 1, whih has value at least

x2n+1oxi+1 +B + x2m−i−1B − 1, having value at least

1
2 or

1
2∗.

• x2n+1Bx2m−1Bo + B + B − 1, whih has value at least

x2n+1ox2m +B +B − 1, having value at least 1 or 1∗.
• Bx2nBx2m+1B − 1, having value at least

1
2 .

• xiBx2n−iBx2m+1B − 1. Then Left an answer to

xiBWx2n−i−1Bx2m+1B − 1, having value at least 0 when i is

odd, or to xi−1WBx2n−iBx2m+1B − 1, having value at least 0 when

i is even.
• x2nBBx2m+1B−1, having value at least x2nB + x2mB − 1, whih has

value

1
2 .

• x2n+1BxiBx2m−iB − 1. Then Left an answer to

x2n+1BWxi−1Bx2m−iB − 1, whih has value at least 0.

If Left plays �rst in x2n+1Bx2mB− 3
4 , she an move to x2n+1Bx2m−1WB− 3

4 ,

having value at least 0. Now onsider Right plays �rst, and his possible moves
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from x2n+1Bx2mB − 3
4 . He an move to:

• x2n+1Bx2mB − 1
2 . Then Left an answer to x2n+1Bx2m−1WB − 1

2 ,

whih has value at least

1
4 .

• B +Bx2n−1Bx2mB − 3
4 , having value at least

7
4 .

• xiBo + B + oBx2n−i−2Bx2mB − 3
4 , whih has value at least

xi+1 +B + x2n−i−1Bx2mB − 3
4 having value more than 1.

• x2n−1Bo + B + Bx2mB − 3
4 , whih has value at least

x2n +B +Bx2mB − 3
4 , having value

5
4 .

• x2n+1B + B + oBx2m−2B − 3
4 , whih has value at least

x2n+1B +B + x2m−1B − 3
4 , having value

5
4 .

• x2n+1BxiBo + B + oBx2m−i−3B − 3
4 , whih has value at least

x2n+1oxi+1 +B + x2m−i−2B − 3
4 , having value at least

3
4 or

3
4∗.

• x2n+1Bx2m−2Bo + B + B − 3
4 , whih has value at least

x2n+1ox2m−1 +B +B − 3
4 , having value

5
4 or

5
4∗.

• Bx2nBx2mB − 3
4 , having value more than

3
4 .

• xiBx2n−iBx2mB − 3
4 . Then Left an answer to

xi−1WBx2n−iBx2mB − 3
4 , having value at least 0.

• x2n+1BxiBx2m−i−1B − 3
4 . Then Left an answer to

x2nWBxiBx2m−i−1B − 3
4 , whih has value at least 0.

If Left plays �rst in x2nBx2m+1B − 3
4 , she an move to x2nBWx2mB − 3

4 ,

having value 0. Now onsider Right plays �rst, and his possible moves from

x2nBx2m+1B − 3
4 . He an move to:

• x2nBx2m+1B − 1
2 . Then Left an answer to x2nBWx2mB − 1

2 , whih

has value

1
4 .

• B +Bx2n−2Bx2m+1B − 3
4 , having value at least

7
4 .

• xiBo + B + oBx2n−i−3Bx2m+1B − 3
4 , whih has value at least

xi+1 +B + x2n−i−2Bx2m+1B − 3
4 , having value more than 1.

• x2n−2Bo + B + Bx2m+1B − 3
4 , whih has value at least

x2n−1 +B +Bx2m+1B − 3
4 , having value at least

7
4 or

7
4∗.

• x2nB + B + oBx2m−1B − 3
4 , whih has value at least

x2nB +B + x2mB − 3
4 , having value

7
4 .

• x2nBxiBo + B + oBx2m−i−2B − 3
4 , whih has value at least

x2noxi+1 +B + x2m−i−1B − 3
4 , having value at least

3
4 or

3
4∗.

• x2nBx2m−1Bo + B + B − 3
4 , whih has value at least

x2nox2m +B +B − 3
4 , having value

5
4 or

5
4∗.

• Bx2n−1Bx2m+1B − 3
4 , having value more than

3
4 .

• xiBx2n−i−1Bx2m+1B − 3
4 . Then Left an answer to

xi−1WBx2n−i−1Bx2m+1B − 3
4 , whih has value at least 0.

• x2nBxiBx2m−iB − 3
4 . Then Left an answer to

x2n−1WBxiBx2m−iB − 3
4 , whih has value more than

1
4 .

We now prove 5. If n = 0, x2nBx2mW has value 0 and x2nBx2m+1W
has value ∗, hene for these two ases, we may onsider n > 1. If m = 0,
x2nBx2mW has value −1

4 and x2n+1Bx2mW has value −1
2 , hene for these
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two ases, we may onsiderm > 1. Consider Right plays �rst and his possible
moves from x2nBx2mW + 1

4 . He an move to:

• x2nBx2mW + 1
2 . Then Left an answer to x2n−1WBx2mW + 1

2 , whih

has value 0.
• B + oBx2n−2Bx2mW + 1

4 , whih has value at least

B + x2n−1Bx2mW + 1
4 , having value at least 1.

• xiBo + B + oBx2n−i−3Bx2mW + 1
4 , whih has value at least

xi+1 +B + x2n−i−2Bx2mW + 1
4 , having value at least

3
4 or

3
4∗.

• x2n−2Bo + B + Bx2mW + 1
4 , whih has value at least

x2n−1 +B +Bx2mW + 1
4 , having value

5
4 or

5
4∗.

• x2nB + B + oBx2m−2W + 1
4 , whih has value at least

x2nB +B + x2m−1W + 1
4 , having value

3
2 .

• x2nBxiBo + B + oBx2m−i−3W + 1
4 , whih has value at least

x2noxi+1 +B + x2m−i−2W + 1
4 , having value

1
2 or

1
2∗.

• x2nBx2m−2Bo+B + 1
4 , whih has value at least x2nox2m−1 +B + 1

4 ,

having value

5
4 or

5
4∗.

• x2nBx2m−1Bo+ 1
4 , whih has value at least x2nox2m + 1

4 , having value
1
4 or

1
4∗.

• xiBx2n−i−1Bx2mW + 1
4 . Then Left an answer to

xiBx2n−i−2WBx2mW + 1
4 , whih has value at least 0.

• x2n−1BBx2mW+ 1
4 , having value at least x

2n−1B + x2mW + 1
4 , whih

has value 0.
• x2nBxiBx2m−i−1W + 1

4 . Then Left an answer to

x2n−1WBxiBx2m−i−1W + 1
4 , whih has value at least

1
4 .

Consider Right plays �rst and his possible moves from x2n+1Bx2m+1W + 1
4 .

He an move to:

• x2n+1Bx2m+1W + 1
2 . Then Left an answer to x2n+1BWx2mW + 1

2 ,

whih has value 0.
• B + oBx2n−1Bx2m+1W + 1

4 , whih has value at least

B + x2nBx2m+1W + 1
4 , having value at least 1.

• xiBo + B + oBx2n−i−2Bx2m+1W + 1
4 , whih has value at least

xi+1 +B + x2n−i−1Bx2m+1W + 1
4 , having value at least

3
4 or

3
4∗.

• x2n−1Bo + B + Bx2m+1W + 1
4 , whih has value at least

x2n +B +Bx2m+1W + 1
4 , having value

5
4∗.

• x2n+1B + B + oBx2m−1W + 1
4 , whih has value at least

x2n+1B +B + x2mW + 1
4 , having value 1.

• x2n+1BxiBo + B + oBx2m−i−2W + 1
4 , whih has value at least

x2n+1oxi+1 +B + x2m−i−1W + 1
4 , having value at least

1
2 or

1
2∗.

• x2n+1Bx2m−1Bo+B+ 1
4 , whih has value at least x2n+1ox2m +B + 1

4 ,

having value

5
4 or

5
4∗.

• x2n+1Bx2mBo+ 1
4 , whih has value at least x2n+1ox2m+1 + 1

4 , having

value

1
4 or

1
4∗.

• xiBx2n−iBx2m+1W + 1
4 . Then Left an answer to
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xiBx2n−iBWx2mW + 1
4 , whih has value at least

1
4 .

• x2n+1BBx2mW + 1
4 , whih has value at least x2n+1 +Bx2mW + 1

4 ,

having value

1
4 or

1
4∗.

• x2n+1BxiBx2m−iW + 1
4 . Then Left an answer to

x2n+1Bxi−1WBx2m−iW + 1
4 , whih has value at least 0 when i

is even, or to x2n+1BxiBWx2m−i−1W + 1
4 , whih has value at least

1
4

when i is odd.
• x2n+1Bx2mBW + 1

4 , having value more than 0.

Consider Right plays �rst and his possible moves from x2n+1Bx2mW + 1
2 .

He an move to:

• x2n+1Bx2mW +1. Then Left an answer to x2nWBx2mW +1, whih
has value

1
4 .

• B+oBx2n−1Bx2mW+1
2 , whih has value at leastB + x2nBx2mW + 1

2 ,

having value at least

5
4 .

• xiBo + B + oBx2n−i−2Bx2mW + 1
2 , whih has value at least

xi+1 +B + x2n−i−1Bx2mW + 1
2 , having value at least 1 or 1∗.

• x2n−1Bo + B + Bx2mW + 1
2 , whih has value at least

x2n +B +Bx2mW + 1
2 , having value

3
2 .

• x2n+1B + B + oBx2m−2W + 1
2 , whih has value at least

x2n+1B +B + x2m−1W + 1
2 , having value

3
2 .

• x2n+1BxiBo + B + oBx2m−i−3W + 1
2 , whih has value at least

x2n+1oxi+1 +B + x2m−i−2W + 1
2 , having value at least

3
4 or

3
4∗.

• x2n+1Bx2m−2Bo + B + 1
2 , whih has value at least

x2n+1ox2m−1 +B + 1
2 , having value

3
2 or

3
2∗.

• x2n+1Bx2m−1Bo+ 1
2 , whih has value at least x2n+1ox2m + 1

2 , having

value

1
2 or

1
2∗.

• xiBx2n−iBx2mW + 1
2 . Then Left an answer to

xiBx2n−i−1WBx2mW + 1
2 , whih has value at least 0.

• x2nBBx2mW + 1
2 , whih has value at least x2nB+ x2mW + 1

2 , having

value

1
2 .

• x2n+1BxiBx2m−i−1W + 1
2 . Then Left an answer to

x2nWBxiBx2m−i−1W + 1
2 , whih has value at least

1
4 .

Consider Right plays �rst and his possible moves from x2nBx2m+1W + 1
2 .

He an move to:

• x2nBx2m+1W + 1. Then Left an answer to x2n−1WBx2m+1W + 1,
whih has value

1
2∗.

• B + oBx2n−2Bx2m+1W + 1
2 whih has value at least

B + x2n−1Bx2m+1W + 1
2 , having value at least 1.

• xiBo + B + oBx2n−i−3Bx2m+1W + 1
2 , whih has value at least

xi+1 +B + x2n−i−2Bx2m+1W + 1
2 , having value at least 1 or 1∗.

• x2n−2Bo + B + Bx2m+1W + 1
2 , whih has value at least

x2n−1 +B +Bx2m+1W + 1
2 , having value

3
2 or

3
2∗.

• x2nB + B + oBx2m−1W + 1
2 , whih has value at least
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x2nB +B + x2mW + 1
2 , having value

3
2 .

• x2nBxiBo + B + oBx2m−i−2W + 1
2 , whih has value at least

x2noxi+1 +B + x2m−i−1W + 1
2 , having value at least

3
4 or

3
4∗.

• x2nBx2m−1Bo + B + 1
2 , whih has value at least x2nox2m +B + 1

2 ,

having value

3
2 or

3
2∗.

• x2nBx2m−1Bo+ 1
2 , whih has value at least x2nox2m + 1

2 , having value
1
2 or

1
2∗.

• xiBx2n−i−1Bx2m+1W + 1
2 . Then Left an answer to

xiBx2n−i−2WBx2m+1W + 1
2 , whih has value at least

1
4∗.

• x2n−1BBx2m+1W+ 1
2 , whih has value at least x2n−1B+x2m+1W+ 1

2 ,

having value

1
2 .

• x2nBxiBx2m−iW + 1
2 . Then Left an answer to

x2n−1WBxiBx2m−iW + 1
2 , whih has value at least 0.

We now prove 6. If n = 0, Bx2nBx2mB has value

7
4 and Bx2nBx2m+1B

has value

3
2 , hene for these two ases, we may onsider n > 1. If m = 0,

Bx2nBx2mB has value

7
4 and Bx2n+1Bx2mB has value

3
2 , hene for these

two ases, we may onsider m > 1. If Left plays �rst in Bx2nBx2mB− 3
2 , she

an move to BWx2n−1Bx2mB− 3
2 whih has value at least 0. Now onsider

Right plays �rst, and his possible moves from Bx2nBx2mB− 3
2 . He an move

to:

• Bx2nBx2mB−1. Then Left an answer to BWx2n−1Bx2mB−1 whih
has value at least

1
2 .

• B + B + oBx2n−2Bx2mB − 3
2 , whih has value at least

B +B + x2n−1Bx2mB − 3
2 , having value more than

5
4 .

• BxiBo + B + oBx2n−i−3Bx2mB − 3
2 , whih has value at least

Bxi+1 +B + x2n−i−2Bx2mB − 3
2 , having value more than

3
4 .

• Bx2n−2Bo + B + Bx2mB − 3
2 , whih has value at least

Bx2n−1 +B +Bx2mB − 3
2 , having value 1.

• BxiBx2n−i−1Bx2mB − 3
2 , whih has value at least

BxiBx2n−i−1 + x2mB − 3
2 , having value more than 0.

If Left plays �rst in Bx2n+1Bx2m+1B − 3
2 , she an move to

BWx2nBx2m+1B − 3
2 whih has value at least 0. Now onsider Right plays

�rst, and his possible moves from Bx2n+1Bx2m+1B − 3
2 . He an move to:

• Bx2n+1Bx2m+1B − 1. Then Left an answer to BWx2nBx2m+1B − 1
whih has value at least

1
2 .

• B + B + oBx2n−1Bx2m+1B − 3
2 , whih has value at least

B +B + x2nBx2m+1B − 3
2 , having value more than

5
4 .

• BxiBo + B + oBx2n−i−2Bx2m+1B − 3
2 , whih has value at least

Bxi+1 +B + x2n−i−1Bx2m+1B − 3
2 , having value more than

3
4 .

• Bx2n−1Bo + B + Bx2m+1B − 3
2 , whih has value at least

Bx2n +B +Bx2m+1B − 3
2 , having value

7
4 .

• BxiBx2n−iBx2m+1B − 3
2 . Then Left an answer to

BxiBx2n−iBWx2mB − 3
2 , whih has value more than 0.
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Consider Right plays �rst, and his possible moves from Bx2n+1Bx2mB − 3
2 .

He an move to:

• Bx2n+1Bx2mB−1. Then Left an answer to BWx2nBx2mB−1 whih
has value at least 0.

• B + B + oBx2n−1Bx2mB − 3
2 , whih has value at least

B +B + x2nBx2mB − 3
2 , having value at least

3
2 .

• BxiBo + B + oBx2n−i−2Bx2mB − 3
2 , whih has value at least

Bxi+1 +B + x2n−i−1Bx2mB − 3
2 , having value more than

3
4 .

• Bx2n−1Bo + B + Bx2mB − 3
2 , whih has value at least

Bx2n +B +Bx2mB − 3
2 , having value

5
4 .

• Bx2n+1B + B + oBx2m−2B − 3
2 , whih has value at least

Bx2n+1B +B + x2m−1B − 3
2 , having value

3
2 .

• Bx2n+1BxiBo + B + oBx2m−i−3B − 3
2 , whih has value at least

Bx2n+1Bxi+1 +B + x2m−i−2B − 3
2 , having value more than

3
4 .

• Bx2n+1Bx2m−2Bo + B + B − 3
2 , whih has value at least

Bx2n+1Bx2m−1 +B +B − 3
2 , having value more than

5
4 .

• BxiBx2n−iBx2mB− 3
2 , whih has value at least BxiBx2n−i+x2mB− 3

2 ,

having value at least

1
4 .

• Bx2n+1BxiBx2m−i−1B − 3
2 . Then Left an answer to

Bx2nWBxiBx2m−i−1B − 3
2 , whih has value at least 0.

Bx2nBx2m+1B has the same value as Bx2nBx2m+1B.

We now prove 7. If n = 0, Bx2nBx2mW has value

1
4 and Bx2nBx2m+1W

has value

1
2 , hene for these two ases, we may onsider n > 1. If m = 0,

Bx2nBx2mW has value 0 and Bx2n+1Bx2mW has value

1
2 , hene for these

two ases, we may onsider m > 1. Consider Right plays �rst, and his

possible moves from Bx2nBx2mW . He an move to:

• B + B + oBx2n−2Bx2mW , whih has value at least

B +B + x2n−1Bx2mW , having value at least

3
2 .

• BxiBo + B + oBx2n−i−3Bx2mW , whih has value at least

Bxi+1 +B + x2n−i−2Bx2mW , having value at least 1.
• Bx2n−2Bo + B + Bx2mW , whih has value at least

Bx2n−1 +B +Bx2mW , having value

3
2 .

• Bx2nB + B + oBx2m−2W , whih has value at least

Bx2nB +B + x2m−1W , having value

3
2 .

• Bx2nBxiBo + B + oBx2m−i−3W , whih has value at least

Bx2nBxi+1 +B + x2m−i−2W , having value more than 1.
• Bx2nBx2m−2Bo+B, whih has value at least Bx2nBx2m−1 +B, hav-

ing value more than

7
4 .

• Bx2nBx2m−1Bo, whih has value at least Bx2nBx2m, having value at

least 1.
• BBx2n−1Bx2mW , having value at least

1
2 .

• BxiBx2n−i−1Bx2mW . Then Left an answer to

BxiBx2n−i−2WBx2mW , whih has value at least 0.
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• Bx2n−1BBx2mW , whih has value at least Bx2n−1 +Bx2mW , having

value at least

1
2 .

• Bx2nBxiBx2m−i−1W . Then Left an answer to

Bx2n−1WBxiBx2m−i−1W , whih has value at least

1
2∗.

Consider Right plays �rst, and his possible moves from Bx2n+1Bx2m+1W .

He an move to:

• B + B + oBx2n−1Bx2m+1W , whih has value at least

B +B + x2nBx2m+1W , having value at least

3
2 .

• BxiBo + B + oBx2n−i−2Bx2m+1W , whih has value at least

Bxi+1 +B + x2n−i−1Bx2m+1W , having value at least 1.
• Bx2n−1Bo + B + Bx2m+1W , whih has value at least

Bx2n +B +Bx2m+1W , having value

7
4∗.

• Bx2n+1B + B + oBx2m−1W , whih has value at least

Bx2n+1B +B + x2mW , having value

7
4 .

• Bx2n+1BxiBo + B + oBx2m−i−2W , whih has value at least

Bx2n+1Bxi+1 +B + x2m−i−1W , having value more than 1.
• Bx2n+1Bx2m−1Bo + B, whih has value at least Bx2n+1Bx2m +B,

having value more than

7
4 .

• Bx2n+1Bx2mBo, whih has value at least Bx2n+1Bx2m+1
, having

value at least 1.
• BBx2nBx2m+1W , having value at least

1
2 .

• BxiBx2n−iBx2m+1W . Then Left an answer to

BxiBx2n−i−1WBx2m+1W , whih has value at least

1
2∗.

• Bx2nBBx2m+1W , whih has value at least Bx2n +Bx2m+1W , having

value

3
4∗.

• Bx2n+1BxiBx2m−iW . Then Left an answer to

Bx2nWBxiBx2m−iW , whih has value at least 0.

Consider Right plays �rst, and his possible moves from Bx2n+1Bx2mW − 1
2 .

He an move to:

• Bx2n+1Bx2mW . Then Left an answer to Bx2nWBx2mW , whih has

value 0.
• B + B + oBx2n−1Bx2mW − 1

2 , whih has value at least

B +B + x2nBx2mW − 1
2 , having value at least

5
4 .

• BxiBo + B + oBx2n−i−2Bx2mW − 1
2 , whih has value at least

Bxi+1 +B + x2n−i−1Bx2mW − 1
2 , having value at least

1
2 .

• Bx2n−1Bo + B + Bx2mW − 1
2 , whih has value at least

Bx2n +B +Bx2mW − 1
2 , having value

5
4 .

• Bx2n+1B + B + oBx2m−2W − 1
2 , whih has value at least

Bx2n+1B +B + x2m−1W − 1
2 , having value

3
2 .

• Bx2n+1BxiBo + B + oBx2m−i−3W − 1
2 , whih has value at least

Bx2n+1Bxi+1 +B + x2m−i−2W − 1
2 , having value more than

3
4 .

• Bx2n+1Bx2m−2Bo + B − 1
2 , whih has value at least

Bx2n+1Bx2m−1 +B − 1
2 , having value at least

3
2 .
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• Bx2n+1Bx2m−1Bo − 1
2 , whih has value at least Bx2n+1Bx2m − 1

2 ,

having value more than

1
4 .

• BBx2nBx2mW − 1
2 , having value at least

1
4 .

• BxiBx2n−iBx2mW − 1
2 . Then Left an answer to

BxiBx2n−i−1WBx2mW − 1
2 , whih has value at least 0.

• Bx2nBBx2mW − 1
2 , whih has value at least Bx2n +Bx2mW − 1

2 ,

having value at least

1
4 .

• Bx2n+1BxiBx2m−i−1W − 1
2 . Then Left an answer to

Bx2nWBxiBx2m−i−1W − 1
2 , whih has value at least 0.

Consider Right plays �rst, and his possible moves from Bx2nBx2m+1W − 1
2 .

He an move to:

• Bx2nBx2m+1W . Then Left an answer to Bx2nBWx2mW , whih has

value 0.
• B + B + oBx2n−2Bx2m+1W − 1

2 , whih has value at least

B +B + x2n−1Bx2m+1W − 1
2 , having value at least 1.

• BxiBo + B + oBx2n−i−3Bx2m+1W − 1
2 , whih has value at least

Bxi+1 +B + x2n−i−2Bx2m+1W − 1
2 , having value at least

1
2 .

• Bx2n−2Bo + B + Bx2m+1W − 1
2 , whih has value at least

Bx2n−1 +B +Bx2m+1W − 1
2 , having value 1∗.

• Bx2nB + B + oBx2m−1W − 1
2 , whih has value at least

Bx2nB +B + x2mW − 1
2 , having value

3
4 .

• Bx2nBxiBo + B + oBx2m−i−2W − 1
2 , whih has value at least

Bx2nBxi+1 +B + x2m−i−1W − 1
2 , having value more than

3
4 .

• Bx2nBx2m−1Bo+B− 1
2 , whih has value at least Bx2nBx2m +B − 1

2 ,

having value at least

3
2 .

• Bx2nBx2mBo− 1
2 , whih has value at least Bx2nBx2m+1 − 1

2 , having

value more than

1
4 .

• BxiBx2n−i−1Bx2m+1W − 1
2 . Then Left an answer to

BxiBx2n−i−1BWx2mW − 1
2 , whih has value at least 0.

• Bx2nBBx2mW − 1
2 , whih has value at least Bx2n +Bx2mW − 1

2 ,

having value

1
4 .

• Bx2nBxiBx2m−iW − 1
2 . Then Left an answer to

Bx2nBxiBWx2m−i−1W − 1
2 , whih has value at least 0 when i

is odd, or to Bx2nBxi−1WBx2m−iW − 1
2 , whih has value at least 0

when i is even.
• Bx2nBx2mBW − 1

2 , having value more than 0.

�
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