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Résumé v

Jeux 
ombinatoires dans les graphes

Résumé : Dans 
ette thèse, nous étudions les jeux 
ombinatoires sous

di�érentes 
ontraintes. Un jeu 
ombinatoire est un jeu à deux joueurs, sans

hasard, ave
 information 
omplète et �ni a
y
lique. D'abord, nous regardons

les jeux impartiaux en version normale, en parti
ulier les jeux VertexNim

et Timber. Puis nous 
onsidérons les jeux partisans en version normale, où

nous prouvons des résultats sur les jeux Timbush, Toppling Dominoes

et Col. Ensuite, nous examinons 
es jeux en version misère, et étudions

les jeux misères modulo l'univers des jeux di
ots et modulo l'univers des

jeux dead-endings. En�n, nous parlons du jeu de domination qui, s'il n'est

pas 
ombinatoire, peut être étudié en utilisant des outils de théorie des jeux


ombinatoires.

Mots-
lés : jeux 
ombinatoires, graphes, jeux impartiaux,

jeux partisans, version normale, version misère, jeu de domi-

nation



vi Abstra
t

Combinatorial games on graphs

Abstra
t: In this thesis, we study 
ombinatorial games under di�erent


onventions. A 
ombinatorial game is a �nite a
y
li
 two-player game with


omplete information and no 
han
e. First, we look at impartial games

in normal play and in parti
ular at the games VertexNim and Timber.

Then, we 
onsider partizan games in normal play, with results on the games

Timbush, Toppling Dominoes and Col. Next, we look at all these games

in misère play, and study misère games modulo the di
ot universe and modulo

the dead-ending universe. Finally, we talk about the domination game whi
h,

despite not being a 
ombinatorial game, may be studied with 
ombinatorial

games theory tools.

Keywords: 
ombinatorial games, graphs, impartial games,

partizan games, normal 
onvention, misère 
onvention, dom-

ination game



Contents vii

Contents

1 Introdu
tion 1

1.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Combinatorial Games . . . . . . . . . . . . . . . . . . 2

1.1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Impartial games 13

2.1 VertexNim . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Dire
ted graphs . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Undire
ted graphs . . . . . . . . . . . . . . . . . . . . 21

2.2 Timber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 General results . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2.1 Paths . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Perspe
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Partizan games 43

3.1 Timbush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 General results . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Bla
k and white trees . . . . . . . . . . . . . . . . . . 54

3.2 Toppling Dominoes . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Proof of Theorem 3.27 . . . . . . . . . . . . . . . . . . 65

3.3 Col . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 General results . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Known results . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.3 Caterpillars . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.4 Cographs . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Perspe
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Misère games 101

4.1 Spe
i�
 games . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 Geography . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.2 VertexNim . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.3 Timber . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.4 Timbush . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.5 Toppling Dominoes . . . . . . . . . . . . . . . . . . 117



viii Contents

4.1.6 Col . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Canoni
al form of di
ot games . . . . . . . . . . . . . . . . . . 126

4.2.1 De�nitions and universal properties . . . . . . . . . . . 127

4.2.2 Canoni
al form of di
ot games . . . . . . . . . . . . . 130

4.2.3 Di
ot misère games born by day 3 . . . . . . . . . . . 136

4.2.3.1 Di
ot games born by day 3 in the general

universe . . . . . . . . . . . . . . . . . . . . . 143

4.2.4 Sums of di
ots 
an have any out
ome . . . . . . . . . . 146

4.3 A peek at the dead-ending universe . . . . . . . . . . . . . . . 147

4.3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . 149

4.3.2 Integers and other dead ends . . . . . . . . . . . . . . 151

4.3.3 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3.3.1 The misère monoid of Q2 . . . . . . . . . . . 153

4.3.3.2 The partial order of numbers modulo E . . . 158

4.3.4 Zeros in the dead-ending universe . . . . . . . . . . . . 160

4.4 Perspe
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Domination Game 167

5.1 About no-minus graphs . . . . . . . . . . . . . . . . . . . . . 169

5.2 The domination game played on unions of graphs . . . . . . . 173

5.2.1 Union of no-minus graphs . . . . . . . . . . . . . . . . 173

5.2.2 General 
ase . . . . . . . . . . . . . . . . . . . . . . . 175

5.3 Perspe
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 Con
lusion 181

A Appendix: Rule sets 185

B Appendix: Omitted proofs 189

B.1 Proof of Theorem 3.30 . . . . . . . . . . . . . . . . . . . . . . 189

B.2 Proof of Theorem 3.31 . . . . . . . . . . . . . . . . . . . . . . 195

B.3 Proof of Lemma 3.80 . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 213



Chapter 1. Introdu
tion 1

Chapter 1

Introdu
tion

Combinatorial games are games of pure strategy, 
loser to Che
kers,

Chess or Go than to Dominion, League of Legends, or Rugby. They are

games satisfying some 
onstraints insuring a player has a winning strategy.

Our goal here is to �nd whi
h player it is, and even the strategy if possible.

There exist other game theories, su
h as e
onomi
 game theory, where

there might be several players, who are allowed to play their moves at the

same time. There, the players' `best' strategies are often probabilisti
, that

is for example a player would de
ide to play the move A with probability

0.3, the move B with probability 0.5, and the move C with probability 0.2,
be
ause they do not know what their opponent might do and ea
h of these

moves might be better than the other depending on the opponent's move. In


ombinatorial game, this does not happen, the `winning' player always has

a deterministi
 winning strategy.

The �rst paper in 
ombinatorial game theory was published in 1902 by

Bouton [5℄, who solved the game of Nim, game that would be
ome the ref-

eren
e in impartial games thanks to the theory developed independently by

Grundy and Sprague in the 30s. For a few de
ades, resear
hers studied the

games where both players have the same moves and are only distinguished by

who plays �rst, games we 
all impartial. In the late 70s, Berlekamp, Conway

and Guy developed the theory of partizan games, where the two players may

have di�erent moves. These games introdu
e many more possibilities, as for

example a player might have a winning strategy whoever starts playing. The


omplexity of determining the winner of a 
ombinatorial game was also 
on-

sidered, ranging from polynomial problems to exptime-
omplete problems.

Another topi
 in 
ombinatorial game theory that has interested resear
hers

is the misère version of a game, that is the game where the winning 
on-

dition is reversed. These games were not well understood, mainly be
ause

when they de
ompose, it is harder to put together the separate analysis of

the 
omponents, until Plambe
k and Siegel proposed a way to make it sim-

pler in the beginning of the 21st 
entury. Referen
es about the topi
 in
lude
the books Winning Ways [4℄ and On Numbers and Games [10℄, and other

books that were published more re
ently, su
h as Lessons in Play [1℄, Games,

Puzzles, & Computation [11℄ and Combinatorial Game Theory [39℄.

Graph theory is more an
ient, Euler was already looking at it in the 18th


entury. A graph is a mathemati
al obje
t that 
an be used to represent any

kind of network, su
h as 
omputer networks, road networks, so
ial networks,
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or neural networks.

Natural questions that arise on these networks 
an be translated under a

graph formalism. Among 
lassi
 graph problems, one 
an mention 
olouring

and domination. These problems admit variants that are two-player games,

where the players may build an answer to the original problem.

In this thesis, we study 
ombinatorial games, mostly games played on

graphs. We �rst give some basi
 de�nitions on games and graphs, before

presenting our results on games. We start with impartial games before going

to partizan games and 
ontinuing with games in misère play. We end with

a game that is not 
ombinatorial but is more like a graph parameter.

1.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Combinatorial Games . . . . . . . . . . . . . . . . 2

1.1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 De�nitions

1.1.1 Combinatorial Games

A 
ombinatorial game is a �nite two-player game with perfe
t information

and no 
han
e. The players, 
alled Left and Right, alternate moves until one

player has no available move. Under the normal 
onvention, the last player

to move wins the game. Under the misère 
onvention, that same player loses

the game. By 
onvention, Left is a female player whereas Right is a male

player.

A position of a game 
an be de�ned re
ursively by its sets of options

G = {GL|GR}, where GL
is the set of positions rea
hable in one move by

Left (
alled Left options), and GR
the set of positions rea
hable in one move

by Right (
alled Right options). The word game 
an be used to refer to a

set of rules, as well as to a spe
i�
 position as just des
ribed. A follower of

a game is a game that 
an be rea
hed after a su

ession of (not ne
essarily

alternating) Left and Right moves. The zero game 0 = {·|·}, is the game

with no option (the dot indi
ates an empty set of options). The birthday of a

game is de�ned re
ursively as one plus the maximum birthday of its options,

with 0 being the only game with birthday 0. We say a game G is born on

day n if its birthday is n and that it is born by day n if its birthday is at

most n. The games born on day 1 are {0|·} = 1, {·|0} = 1 and {0|0} = ∗.
The games born by day 1 are the same with the addition of 0. A game G is
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0 1 1 ∗

Figure 1.1: Game trees of games born by day 1.

said to be simpler than a game H if the birthday of G is smaller than the

birthday of H.

A game 
an also be depi
ted by its game tree, where the game trees of

its options are linked to the root by downward edges, left-slanted for Left

options and right-slanted for Right options. For instan
e, the game trees of

games born by day 1 are depi
ted on Figure 1.1.

When the Left and Right options of a game are always the same and that

property is true for any follower of the game, we say the game is impartial.

Otherwise, we say it is partizan.

Given two games G = {GL|GR} and H = {HL|HR}, we re
ursively

de�ne the (disjun
tive) sum of G and H as G + H = {GL + H,G +
HL|GR + H,G + HR} (where GL + H is the set of sums of H and an

element of GL
), i.e. the game where ea
h player 
hooses on their turn

whi
h one of G and H to play on. We write {GL1 · · ·GLk |GR1 · · ·GRℓ} for

{{GL1 · · ·GLk}|{GR1 · · ·GRℓ}} to simplify the notation. We denote by GL

any Left option of G, and by GR
any of its Right options. The 
onjugate G

of a game G is de�ned re
ursively by G = {GR|GL} (where GR
is the set of


onjugates of elements of GR
), that is the game where Left and Right would

have swit
hed their roles.

For both 
onventions, there are four possible out
omes for a game. Games

for whi
h Left has a winning strategy whatever Right does and whoever plays

�rst have out
ome L (for left). Similarly, N , P and R (for next, previous and

right) denote respe
tively the out
omes of games for whi
h the �rst player,

the se
ond player, and Right has a winning strategy. We note o+(G) the

normal out
ome of a game G i.e. its out
ome under the normal 
onvention

and o−(G) the misère out
ome ofG. We also say for any out
ome O, G ∈ O+

or G is a (normal) O-position whenever o+(G) = O, and H ∈ O−
or H is

a (misère) O-position when o−(H) = O. Out
omes are partially ordered

a

ording to Figure 1.2, with greater games being more advantageous for

Left. Note that there is no general relationship between the normal out
ome

and the misère out
ome of a game.

Given two games G and H, we say that G is greater than or equal to H
in normal play whenever Left prefers the game G rather than the game H in

any sum, that is G >+ H if for every game X, o+(G+X) > o+(H+X). We

say that G and H are equivalent in normal play, denoted G ≡+ H, when for

every game X, o+(G +X) = o+(H +X) (i.e. G >+ H and H >+ G). We

also say that G is (stri
tly) greater than H in normal play if G is greater than
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L

N P

R

Figure 1.2: Partial ordering of out
omes

or equal to H but G and H are not equivalent, that is G >+ H if G >+ H
and G 6≡+ H. We say that G and H are in
omparable in normal play if

none is greater than or equal to the other, that is G �

+ H if G �+ H and

H �+ G. Inequality, equivalen
e and in
omparability are de�ned similarly

under misère 
onvention, using supers
ript − instead of +. We reserved the

symbol = for equality between game trees, when used between games.

For normal play, there exist other 
hara
terisations for 
he
king inequal-

ity:

G >
+ H ⇔ G+H ∈ P+ ∪ L+

⇔ (∀GR ∈ GR, GR 
 H) ∧ (∀HL ∈ HL, G 
 HL).

The last 
hara
terisation was a
tually the original de�nition given by Conway

in [10℄. The se
ond one tells us that for any games G and H, if G and H are

equivalent in normal play, then the sum of G and the 
onjugate of H is a

normal P-position and, as G is equivalent to itself, G+G is always a normal

P-position, whi
h is a
tually easy to prove by mimi
king the �rst player's

move as the se
ond player.

In normal play, �nding the out
ome of a game is the same as �nding how

it is 
ompared to 0:





G is a P-position if G ≡+ 0 : G is zero

G is an L-position if G >+ 0 : G is positive

G is an R-position if G <+ 0 : G is negative

G is an N -position if G �

+ 0 : G is fuzzy

For example, 0 is zero, 1 is positive, 1 is negative, and ∗ is fuzzy.

As G +G ≡+ 0 for any game G, we 
all the 
onjugate of a game G the

negative of G and denote it −G in normal play.

We remind the reader that the order is only partial, in both 
onventions,

and many pairs of games are in
omparable, su
h as 0 and ∗.
Siegel showed [38℄ that if two games are 
omparable in misère play, they

are 
omparable in normal play as well, in the same order, namely:

Theorem 1.1 (Siegel [38℄) If G >− H, then G >+ H.



Chapter 1. Introdu
tion 5

However, the 
onverse in not true, as {∗|∗} ≡+ 0 and {∗|∗} �− 0.

Some options are 
onsidered irrelevant, either be
ause there is a better

move or be
ause the answer of the opponent is `predi
table'. We give here

the de�nition of these options, omitting the supers
ripts + and −, as they
are de�ned the same way for normal play and misère play.

De�nition 1.2 (dominated and reversible options)

Let G be a game.

(a) A Left option GL
is dominated by some other Left option GL′

if

GL′

> GL
.

(b) A Right option GR
is dominated by some other Right option GR′

if

GR′

6 GR
.

(
) A Left option GL
is reversible through some Right option GLR

if

GLR 6 G.

(d) A Right option GR
is reversible through some Left option GRL

if

GRL > G.

In both normal and misère play, a game is said to be in 
anoni
al form

if none of its options is dominated or reversible and all its options are in


anoni
al form, and every game is equivalent to a single game in 
anoni
al

form [4, 10, 38℄. To get to this 
anoni
al form, one may use two di�erent

operations 
orresponding to the status of the option they want to get rid of:

• Whenever GL1
is dominated, removing GL1

leaves an equivalent game:

G ≡ {GL \ {GL1}|GR}
• Whenever GR1

is dominated, removing GR1
leaves an equivalent game:

G ≡ {GL|GR \ {GR1}}
• Whenever GL1

is reversible through GL1R1
, bypassing GL1

leaves an

equivalent game: G ≡ {(GL \ {GL1}) ∪GL1R1L|GR}
• Whenever GR1

is reversible through GR1L1
, bypassing GR1

leaves an

equivalent game: G ≡ {GL|(GR \ {GR1}) ∪GR1L1R}

Theorem 1.1 implies that if an option is dominated (resp. reversible) in

misère play, it is also dominated (resp. reversible) in normal play. Again,

the 
onverse is not true: in {{∗|∗}, 0|{∗|∗}, 0}, all options are dominated in

normal play, but none is dominated in misère play; in {∗|∗}, both options are

reversible in normal play, but none is reversible in misère play. This implies

that the normal 
anoni
al form of a game and its misère 
anoni
al form may

be di�erent: {∗|∗} is in misère 
anoni
al form, whereas its normal 
anoni
al

form is 0.
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a b
c

d e f

Figure 1.3: The undire
ted graph with

vertex set {a, b, c, d, e, f} and edge set

{(a, d), (b, c), (b, e), (b, f), (e, f)}

a b
c

d e f

Figure 1.4: The dire
ted graph with

vertex set {a, b, c, d, e, f} and ar
 set

{(a, b), (c, b), (c, f), (e, d), (f, c)}

1.1.2 Graphs

A graph G 
onsists of a set of verti
es V (G) and a multiset of edges E(G)
representing a symmetri
 binary relation between the verti
es. As the re-

lation is symmetri
, the edge between two verti
es u and v will be repre-

sented by (u, v) or (v, u) and the multipli
ity of the edge between u and

v is the sum of the multipli
ity of these edges in the multiset E(G). We

say a graph is simple if the relation represented by E(G) is irre�exive and

E(G) is a set, that is if no vertex is in relation with itself and the mul-

tipli
ity of ea
h edge is (0 or) 1. A dire
ted graph G is a generalisation

of a graph, su
h that the relation represented by E(G) no longer needs to

be symmetri
. We sometimes note A(G) rather than E(G) when G is a

dire
ted graph, and we 
all dire
ted edges or ar
s the elements of A(G).
The underlying undire
ted graph und(G) of a dire
ted graph G is the graph

obtained by 
onsidering ar
s as edges, that is V (und(G)) = V (G) and

E(und(G)) = {(u, v)|(u, v) ∈ A(G) or (v, u) ∈ A(G)}. An oriented graph

is a dire
ted graph whose underlying undire
ted graph is a simple graph.

An orientation

−→
G of a graph G is a dire
ted graph su
h that the underly-

ing undire
ted graph of

−→
G is G. The number of verti
es |V (G)| of a graph

G is 
alled the order of G. A subgraph H of a graph G is a graph whose

vertex set is a subset of V (G) and whose edge set is a subset of E(G). An

indu
ed subgraph H of G is a subgraph of G su
h that E(H) is the restri
-
tion of E(G) to elements of V (H). The graph indu
ed by a set of verti
es

{v1 · · · vk} of a graph G is the indu
ed subgraph G[{v1 · · · vk}] of G with

vertex set {v1 · · · vk}.

Example 1.3 Figure 1.3 gives an example of a graph. The graph is simple

as the multipli
ity of ea
h edge is at most one. Figure 1.4 gives an example

of a dire
ted graph. The dire
ted graph is simple as the multipli
ity of ea
h

edge is at most one. Nevertheless, it is not an oriented graph as it 
ontains

both the ar
 (c, f) and the ar
 (f, c).
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A path (v1 · · · vn) of a graph G is a list of verti
es of G su
h that for any

i in J2;nK, (vi−1, vi) is an edge of G. A dire
ted path (v1 · · · vn) of a dire
ted

graph G is a list of verti
es of G su
h that for any i in J2;nK, (vi−1, vi) is an
ar
 of G. We say that (n − 1) is the length of the path, and that the path

is from v1 to vn. A 
y
le (v1 · · · vn) of a graph G is a path of G su
h that

(vn, v1) ∈ E(G). A 
ir
uit (v1 · · · vn) of a dire
ted graph G is a dire
ted path

of G su
h that (vn, v1) ∈ A(G). We also say that n is the length of the 
y
le.

A path or 
y
le is said to be simple if all its verti
es are pairwise distin
t. A

graph is said to be 
onne
ted if for any pair u, v of verti
es, there exists a path
from u to v. A 
onne
ted 
omponent of a graph G is a maximal 
onne
ted

subgraph of G. A dire
ted graph is said to be strongly 
onne
ted if for any

pair u, v of verti
es, there exists a dire
ted path from u to v and a dire
ted

path from v to u. A strongly 
onne
ted 
omponent of a dire
ted graph G is

a maximal strongly 
onne
ted subgraph of G. A 
onne
ted 
omponent of a

dire
ted graph G is a 
onne
ted 
omponent of und(G). The distan
e d(u, v)
between two verti
es u and v in a graph G is the length of the shortest path

between u and v in G if su
h a path exists, and in�nite otherwise.

Example 1.4 Figure 1.5 gives an example of a path. Figure 1.6 gives an

example of a 
y
le. We 
an see that both graphs are 
onne
ted. Figure 1.7

is an example of a non-
onne
ted graph having three 
onne
ted 
omponents:

there is no path from a to b or to c, and there is none either from b to c.
Figure 1.8 is an example of a strongly-
onne
ted dire
ted graph: given any

two verti
es of the dire
ted graph, one only needs to follow the grey ar
s

from one to the other.

A subdivision of a graph G is a graph obtained from G by repla
ing some

edges by paths of any length. The interse
tion graph of a graph G is the

subdivision of G su
h that ea
h edge of G has been repla
ed by a path with

two edges.

Example 1.5 Figure 1.9 gives an example of a graph (on the left) and its

interse
tion graph (on the right). Every edge of the �rst graph has been

repla
ed by a vertex in
ident to both ends of that edge.

A neighbour u of a vertex v in a graph G is a vertex su
h that

(u, v) ∈ E(G). When u is a neighbour of v, we say u and v are adja-


ent. The neighbourhood N(v) of a vertex v is the set of all neighbours of v.
The 
losed neighbourhood N [v] of a vertex v is the set N(v)∪{v}. The degree
dG(v) (or d(v)) of a vertex v in a graph G is the number of its neighbours.

An in-neighbour of a vertex v in a dire
ted graph G is a vertex u su
h that

(u, v) ∈ E(G). An out-neighbour of a vertex u in a dire
ted graph G is a

vertex v su
h that (u, v) ∈ E(G). We say (u, v) is an out-ar
 of u and an

in-ar
 of v. The in-degree d−G(v) (or d
−(v)) of a vertex v in a dire
ted graph

G is the number of its in-neighbours. The out-degree d+G(v) (or d+(v)) of
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Figure 1.5: The path on four verti
es Figure 1.6: The 
y
le on six verti
es

a b c

Figure 1.7: A graph with three 
on-

ne
ted 
omponents

Figure 1.8: A strongly 
onne
ted di-

re
ted graph

Figure 1.9: A graph and its interse
tion graph
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Figure 1.10: An independent set of a

graph

Figure 1.11: A 
lique of a graph

a vertex v in a dire
ted graph G is the number of its out-neighbours. The

degree dG(v) (or d(v)) of a vertex v in a dire
ted graph G is the sum of its

in-degree and its out-degree.

An independent set is a set of verti
es indu
ing a graph with no edge.

A 
lique is a set of verti
es indu
ing a graph where any pair of verti
es

forms an edge. A proper 
olouring of a graph G over a set S is a fun
tion

c : V (G) → S su
h that for any element i of S, c−1(i) is an independent set.

A partial proper 
olouring of a graph G is a proper 
olouring of an indu
ed

subgraph of G. A bipartite graph is a graph admitting a proper 
olouring

over a set of size 2. A planar graph is a graph one 
an draw on the plane

without having edges 
rossing ea
h other.

Example 1.6 In Figure 1.10, the grey verti
es form an independent set of

the graph: they are pairwise not adja
ent. In Figure 1.10, the grey verti
es

form a 
lique of the graph: they are pairwise adja
ent.

The 
omplement G of a simple graph G is the

graph with vertex set V (G) = V (G) and edge set

E(G) = {(u, v)|u, v ∈ V (G), u 6= v, (u, v) /∈ E(G)}. The disjoint union

G ∪ H of two graphs G and H (having disjoint sets of verti
es, that is

V (G) ∩ V (H) = ∅) is the graph with vertex set V (G ∪H) = V (G) ∪ V (H)
and edge set E(G ∪H) = E(G) ∪ E(H). The join G ∨ H of two graphs G
and H is the graph with vertex set V (G ∨H) = V (G) ∪ V (H) and edge

set E(G ∨H) = E(G) ∪E(H) ∪ {(u, v)|u ∈ V (G), v ∈ V (H)}. The disjoint
union and the join operations are extended to more than two graphs,

iteratively, as the operation is both 
ommutative and asso
iative. The

Cartesian produ
t G�H of two graphs G and H is the graph with vertex

set V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)} and edge set

E(G�H) = {((u1, v1), (u2, v2))|(u1 = u2 and (v1, v2) ∈ E(H))
or (v1 = v2 and (u1, u2) ∈ E(G))}.
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Figure 1.12: A forest of three trees

Example 1.7 The 
omplement of an independent set is a 
lique, and vi
e

versa. The join of n verti
es is a 
lique. The disjoint union of n verti
es is

an independent set. The 
omplement of the join of k graphs is the disjoint

union of the 
omplements of these graphs. The Cartesian produ
t of two

single edges is a 
y
le on four verti
es.

A tree is a 
onne
ted graph with no 
y
le. A forest is a graph with no


y
le. A star is a tree where all verti
es but one have degree 1. That vertex
with higher degree is 
alled the 
enter of the star. A subdivided star is any

subdivision of a star. A 
aterpillar is a tree su
h that the set of verti
es of

degree at least 2 forms a path. A rooted tree is a tree with a spe
ial vertex,


alled the root of the tree. In a rooted tree, a vertex u is a 
hild of a vertex

v if u and v are adja
ent and the distan
e between u and the root is greater

than the distan
e between v and the root; in this 
ase, we say v is a parent

of u. In a tree, a vertex of degree 1 is 
alled a leaf, and any other vertex is


alled an internal node.

Example 1.8 Figure 1.12 is an example of a forest. As in any forest, ea
h


onne
ted 
omponent is a tree. The middle one is a subdivided star, where

the grey vertex is the 
enter. The right one is a 
aterpillar, where the verti
es

of degree at least two are 
ir
led in grey, while the edges 
onne
ting them

are grey too, highlighting the fa
t they form a path.

A split graph is a graph whose vertex set 
an be partitioned into a 
lique

and an independent set. The adja
en
y relation between these two sets might

be anything.

Example 1.9 Figure 1.13 gives an example of a split graph. The white

verti
es indu
e a 
lique, and the bla
k verti
es indu
e an independent set.
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Figure 1.13: A split graph

The set of 
ographs is de�ned re
ursively as follows: the graph with one

vertex and no edge is a 
ograph; if G and H are 
ographs, then G ∪H and

G ∨H are 
ographs.

Given a rooted tree with all internal nodes labelled D or J , going from the

leaves to the root, we 
an asso
iate to ea
h node of the tree a graph as follows:

a leaf is asso
iated to a single vertex; a node labelled D is asso
iated to the

disjoint union of its 
hildren; and a node labelled J is asso
iated to the join

of its 
hildren.

A 
otree of a 
ograph is a labelled rooted tree su
h that: the leaves 
orrespond

to the verti
es of the 
ograph; the internal node are labelled D or J ; and the

graph asso
iated to the root is the 
ograph.

Example 1.10 Figure 1.14 gives an example of a 
ograph, while Figure 1.15

gives a 
otree asso
iated with the 
ograph of Figure 1.14. The root is the

J vertex on the top. The two verti
es labelled J on the right of the 
otree


ould be merged (into the root), but this is not ne
essary.
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a b c d e

f g h

Figure 1.14: A 
ograph

a c b d e f h g

D

J

D

J

J

D

J

Figure 1.15: An asso
iated 
otree
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Chapter 2

Impartial games

Impartial games are a subset of games in whi
h the players are not distin-

guished, that is they both have the same set of moves through the whole

game. More formally, a game G is said to be impartial if GL = GR
and all

its options are impartial.

As the players are not distinguished, the only possible out
omes are N
and P (the only di�eren
e between the players is who plays �rst). When we

deal with impartial games only, we refer to the �rst player as she and the

se
ond player as he.

Sprague [41, 42℄ and Grundy [19℄ showed independently that any impar-

tial position is equivalent in normal play to a Nim position on a single heap.

The size of su
h a heap is unique, whi
h indu
es a fun
tion on positions

that is 
alled the Grundy-value and is noted g. An impartial game has out-


ome P if and only if its Grundy-value is 0. The Grundy-value of a game

is the minimum non-negative integer that is not the Grundy-value of any

option of this game. The purpose of the Grundy-value is to give additional

information 
ompared to the out
ome. It is a
tually su�
ient to know the

Grundy-values of two games to determine the Grundy-value of their sum:

g(G+H) = g(G)⊕ g(H)

where ⊕ is the XOR of integers (sum of numbers in binary without 
arrying).

That operation is also 
alled the Nim-sum of two integers. It is known that

g(G) = g(H) ⇔ G ≡+ H when G and H are both impartial games (the

Grundy-value is not de�ned on partizan games), and two impartial games

having di�erent Grundy-values are in
omparable.

The impartial games we will present in this 
hapter are 
alled Ver-

texNim and Timber. Both games are played on dire
ted graphs, though

VertexNim is played on weighted dire
ted graphs whereas having weights

would be irrelevant when playing Timber. In Se
tion 2.1, we de�ne the game

VertexNim and give polynomial-time algorithms for �nding the normal

out
ome of dire
ted graphs with a self loop on every vertex and undire
ted

graphs where the self-loops are optional. In Se
tion 2.2, we de�ne the game

Timber, show how to redu
e any position to a forest and give polynomial-

time algorithms for �nding the normal out
ome of 
onne
ted dire
ted graphs

and oriented forests of paths.
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The results presented in Se
tion 2.1 are about to appear in [16℄ (joint

work with Éri
 Du
hêne), and those presented in Se
tion 2.2 appeared in [29℄

(joint work with Ri
hard Nowakowski, Emily Lamoureux, Stephanie Mellon

and Timothy Miller).

2.1 VertexNim . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Dire
ted graphs . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Undire
ted graphs . . . . . . . . . . . . . . . . . . 21

2.2 Timber . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 General results . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Perspe
tives . . . . . . . . . . . . . . . . . . . . . . 40

2.1 VertexNim

VertexNim is an impartial game played on a weighted strongly-
onne
ted

dire
ted graph with a token on a vertex. On a move, a player de
reases the

weight of the vertex where the token is and slides the token along a dire
ted

edge. When the weight of a vertex v is set to 0, v is removed from the

graph and all the pairs of ar
s (p, v) and (v, s) (with p and s not ne
essarily
distin
t) are repla
ed by an ar
 (p, s).

A position is des
ribed by a triple (G,w, u), where G is a dire
ted graph,

w a fun
tion from V (G) to positive integers and u a vertex of G.

Example 2.1 Figure 2.1 gives an example of a move. The token is on the

grey vertex. The player whose turn it is 
hooses to de
rease the weight of

this vertex from 5 to 2 and slide the token through the ar
 to the right. They


ould have slid it through the ar
 to the left, but through no other ar
.

Example 2.2 Figure 2.2 is an example of a move whi
h sets a vertex to

0. The token is on the grey vertex. The player whose turn it is 
hooses to

de
rease the weight of this vertex from 2 to 0 and move the token through the

ar
 to the right. New ar
s are added from the bottom left vertex and middle

right vertex to the bottom middle vertex, top middle vertex and middle right

vertex, 
reating a self loop on the middle right vertex.

VertexNim 
an also be played on a 
onne
ted undire
ted graph G by

seeing it as a symmetri
 dire
ted graph where the vertex set remains the

same and the ar
 set is {(u, v), (v, u)|(u, v) ∈ E(G)}.
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2 3

3 5 1

2 3

3 2 1

Figure 2.1: Playing a move in VertexNim

2 3 5

7 2 2

4 2 5

2 3 5

7 2

4 2 5

Figure 2.2: Setting a vertex to 0 in VertexNim
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VertexNim 
an be seen as a variant of the game Vertex NimG (see

[43℄), where the players 
annot put the token on a vertex with weight 0 and

instead 
ontinue to move it until it rea
hes a vertex with positive weight,

though we only 
onsider the Remove then move version.

Multiple ar
s are irrelevant, so we 
an 
onsider we are only dealing with

simple dire
ted graphs.

Example 2.3 Figure 2.3 shows an exe
ution of the game. The token is on

the grey vertex and the player whose turn it is moves it through the grey ar
.

After 11 moves, all weights are set to 0, so the player who started the game

wins. Be 
areful that it does not mean the starting position is an N -position,

as the se
ond player might have better moves to 
hoose at some point in the

game.

In this se
tion, we present algorithms to �nd the out
ome of any dire
ted

graph with a self loop on every vertex and the out
ome of any undire
ted

graph.

2.1.1 Dire
ted graphs

On a 
ir
uit, without any loop, the game is 
alled Adja
ent Nim. We �rst

analyse the 
ase when the graph is a 
ir
uit and no vertex has weight 1, that
is w−1(1) = ∅. If the length of the 
ir
uit is odd, the �rst player 
an redu
e

the weight of the �rst vertex to 1 then �
opy� the moves of the se
ond player

(redu
ing the weight of the vertex to 0 if he just did the same, and redu
ing

the weight to 1 otherwise) to for
e him to play on the verti
es she leaves him

in a way so that he is for
ed to empty them (be
ause she left the weight as

1), breaking the �symmetry� on the last vertex to save the last move for her.

When the length of the 
ir
uit is even, a player who would empty a vertex

while no 1 has appeared would get themself in the position of a se
ond player

on an odd 
ir
uit, so it is never a good move and the two players will play on

distin
t sets of verti
es until a vertex is lowered to 1. A
tually, we will see

that getting the weight of a vertex to 1 is not good either, so the minimum

weight of the verti
es de
ides the winner.

Theorem 2.4 Let (Cn, w, v1) : n > 3 be an instan
e of VertexNim with

Cn the 
ir
uit of length n and w : V → N>1.

• If n is odd, then (Cn, w, v1) is an N -position.

• If n is even, then (Cn, w, v1) is an N -position if and only if the smallest

index of a vertex of minimum weight, that is min{argmin
16i6n

w(vi)}, is

even.

Note that when n is even, the above Theorem implies that the �rst player

who must play on a vertex of minimum weight will lose the game.

Proof.



Chapter 2. Impartial games 17

3 2

4 1 5

2 3 4

3 2

7 5

2 3 4

3 2

42

2 3 4

3 2

4 2

2 4

3 2

4 2

4

3 2

2

4

3

2

4

3

1

4

3

4

1

4 4 0

Figure 2.3: Playing VertexNim, the token being on the grey vertex
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• Case (1) If n is odd, then the �rst player 
an apply the following

strategy to win: �rst, she plays w(v1) → 1. Then for all 1 6 i < n−1
2 :

if the se
ond player empties v2i, then the �rst player also empties

the following vertex v2i+1. Otherwise, she sets w(v2i+1) to 1. The

strategy is di�erent for the last two verti
es of Cn: if the se
ond

player empties vn−1, then she plays w(vn) → 1, otherwise she plays

w(vn) → 0. As w(v1) = 1, the se
ond player is now for
ed to empty

v1. Sin
e an even number of verti
es have been deleted at this

point, we have an odd 
ir
uit to play on. It now su�
es for the

�rst player to empty all the verti
es on the se
ond run. Indeed, the

se
ond player is also for
ed to set ea
h weight to 0 sin
e he has to

play on verti
es having their weight equal to 1. Sin
e the 
ir
uit is

odd, the �rst player is guaranteed to make the last move on vn or vn−1.

• Case (2) If n is even, we 
laim that who must play the �rst vertex of

minimum weight will lose the game. The winning strategy of the other

player 
onsists in de
reasing by 1 the weight of ea
h vertex at their

turn. First assume that min{argmin
16i6n

w(vi)} is odd. If the strategy

of the se
ond player always 
onsists in de
reasing the weight of the

verti
es he plays on by 1, then the �rst player will be the �rst to

set a weight to 0 or 1. If she sets a vertex to 0, then the se
ond

player now fa
es an instan
e (C ′
n−1, w

′, vi) with w′ : V ′ → N>1, whi
h

is winning a

ording to the previous item. If she sets a vertex to

1, then the se
ond player will empty the following vertex, leaving to

the �rst player a position (C ′
n−1 = (v′1, v

′
2, . . . , v

′
n−1), w

′, v′2) with w′ :
V ′ → N>1 ex
ept on w′(v′1) = 1. This position 
orresponds to the

one of the previous item after the �rst move, and is thus losing. A

similar argument shows that the �rst player has a winning strategy if

min{argmin
16i6n

w(vi)} is even.

�

On a general strongly 
onne
ted digraph, the problem seems harder.

Nevertheless, we manage to �nd the out
ome of a strongly 
onne
ted digraph

having the additional 
ondition that every vertex has a self loop.

When the token is on a vertex with weight at least 2 and a self loop, we

give a non-
onstru
tive argument that the game is an N -position (though

from the rest of the proof, we 
an dedu
e a winning move in polynomial

time). Hen
e, when the token is on a vertex of weight 1, the aim of both

players is to have the other player be the one that moves it to a vertex with

weight at least 2. This is why we de�ne a labelling of the verti
es of the

dire
ted graph that indi
ates if the next player is on a good position to have

her opponent eventually move the token to a vertex with weight at least 2.
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De�nition 2.5 Let G be a dire
ted graph. We de�ne a labelling

loG : V (G) → {P,N} as follows :

Let S ⊆ V (G) be a non-empty set of verti
es su
h that the graph indu
ed by

S is strongly 
onne
ted and ∀u ∈ S,∀v ∈ (V (G)\S), (u, v) /∈ E(G).
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.
Let Ge be the graph indu
ed by V (G)\S and Go the graph indu
ed by

V (G)\(S ∪ T ).
If |S| is even, we label N all elements of S and we label elements of V \ S
as we would have labelled them in the graph Ge.

If |S| is odd, we label P all elements of S, we label N all elements of T , and
we label elements of V \ (S ∪ T ) as we would have labelled them in the graph

Go.

When de
omposing the graph into strongly 
onne
ted 
omponents, S is one

of those with no out-ar
. The 
hoi
e of S is not unique, unlike the loG
fun
tion: if S1 and S2 are both strongly 
onne
ted 
omponents without out-

ar
s, the one whi
h is not 
hosen as the �rst set S will remain a strongly


onne
ted 
omponent after the removal of the other, and as it has no out-ar
,

none of its verti
es will be in the T set.

The labelled graph does not need to be strongly 
onne
ted in that de�-

nition as we will use it on the subgraph of our position indu
ed by verti
es

of weight 1, where a path from some verti
es might have to go through a

vertex of bigger weight to rea
h some other verti
es of weight 1.

Example 2.6 Figure 2.4 gives the lo labelling of a dire
ted graph. The

sets Si, Ti are pointed out to give the order in whi
h we 
onsider them. Note

that several orders are possible, but all return the same labelling. All verti
es

belonging to S1 are labelled N be
ause the size of S1 is even. As su
h, T1

is 
onsidered empty even though there are verti
es having out-neighbours in

S1. All verti
es belonging to S5 are labelled P be
ause the size of S5 is odd.

As su
h, the two verti
es belonging to T5 (be
ause they are unlabelled at

that time and have an outneighbour in S5) are labelled N .

We now give the algorithm for �nding the out
ome of a strongly 
on-

ne
ted dire
ted graph with a self loop on every vertex.

Theorem 2.7 Let (G,w, u) be an instan
e of VertexNim where G is

strongly 
onne
ted with a self loop on ea
h vertex. De
iding whether (G,w,u)

is P or N 
an be done in time O(|V (G)||E(G)|).

Proof. Let G′
be the indu
ed subgraph of G su
h that

V (G′) = {v ∈ V (G) | w(v) = 1}.
If G = G′

, then (G,w, u) is an N -position if and only if |V (G)| is odd sin
e

the problem redu
es to �She loves move, she loves me not�. We will now

assume that G 6= G′
, and 
onsider two 
ases for w(u):
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Figure 2.4: lo-labelling of a dire
ted graph

• Case (1) Assume w(u) > 2. If there is a winning move whi
h redu
es

the weight of u to 0, then we 
an play it and win. Otherwise, redu
ing

the weight of u to 1 and staying on u is a winning move. Hen
e

(G,w, u) is an N -position.

• Case (2) Assume now w(u) = 1, i.e., u ∈ G′
. A

ording to De�nition

2.5, 
omputing loG′
yields a sequen
e of 
ouples of sets (Si, Ti) (whi
h

is not unique). Note that we do not 
onsider Ti when Si has an even

size. Thus the following assertions hold: if u ∈ Si for some i, then any

dire
t su

essor v of u is either in the same 
omponent Si (as there

are no out-ar
) or has been previously labelled (is in ∪j<i(Sj ∪ Tj)),
and if u ∈ Ti 6= ∅ for some i, then there exists a dire
t su

essor v of

u in the set Si, with loG′(v) = P.
Our goal is to show that (G,w, u) is an N -position if and only

if loG′(u) = N by indu
tion on |V (G′)|. If |V (G′)| = 1, then

V (G′) = {u} and loG′(u) = P. Sin
e w(u) = 1, we are for
ed to

redu
e u to 0 and go to a vertex v su
h that w(v) > 2, whi
h we

previously proved to be a losing move. Now assume |V (G′)| > 2.
First, note that when one redu
es the weight of a vertex v to 0, the
repla
ement of the ar
s does not 
hange the strongly 
onne
ted 
om-

ponents (ex
ept for the 
omponent 
ontaining v of 
ourse, whi
h loses
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one vertex). Consequently, if u ∈ Si for some i, then for any vertex

v ∈ ∪i−1
l=1(Tl∪Sl), loG′\{u}(v) = loG′(v) and for any vertex w ∈ Si\{u},

loG′\{u}(w) 6= loG′(w) sin
e parity of Si has 
hanged. If u ∈ Ti for some

i, then for any vertex v ∈ (∪i−1
l=1(Tl ∪ Sl)) ∪ Si, loG′\{u}(v) = loG′(v).

We now 
onsider two 
ases for u: �rst assume that loG′(u) = P, with
u ∈ Si for some i. We redu
e the weight of u to 0 and we are for
ed to

move to a dire
t su

essor v. If w(v) > 2, we previously proved this is

a losing move. If v ∈ ∪i−1
l=1(Tl ∪ Sl), then loG′\{u}(v) = loG′(v) = N (if

loG′(v) = P , we would have v ∈ Sl, and so u ∈ Tl) and it is a losing

move by indu
tion hypothesis. If v ∈ Si, then loG′\{u}(v) 6= loG′(v)
and as loG′(v) = P , loG′\{u}(v) = N and the move to v is a losing

move by indu
tion hypothesis.

Now assume that loG′(u) = N . If u ∈ Ti for some i, we 
an redu
e

the weight of u to 0 and move to a vertex v ∈ Si, whi
h is a winning

move by indu
tion hypothesis. If u ∈ Si for some i, it means that

|Si| is even, we 
an redu
e the weight of u to 0 and move to a vertex

v ∈ Si, with loG′\{u}(v) 6= loG′(v) = N . This is a winning move by

indu
tion hypothesis. Hen
e, (G,w, u) is an N -position if and only if

loG′(u) = N . Figure 2.5 illustrates the 
omputation of the lo fun
tion.

Con
erning the 
omplexity of the 
omputation, note that when w(u) > 2,
the algorithm answers in 
onstant time. The 
omputation of loG′(u) when
w(u) = 1 needs to be analysed more 
arefully. De
omposing a dire
ted graph

H into strongly 
onne
ted 
omponents to �nd the sets S and T 
an be done

in time O(|V (H)| + |E(H)|), and both |V (H)| and |E(H)| are less than or

equal to |E(G)| in our 
ase sin
e H is a subgraph of G and G is strongly


onne
ted. Moreover, the number of times we 
ompute S and T is 
learly

bounded by |V (G)|. These remarks lead to a global algorithm running in

O(|V (G)||E(G)|) time. �

The 
omplexity of the problem on a general digraph where some of the

verti
es with weight at least 2 have no self loop is still open (remark that

having a self loop on a vertex of weight 1 does not a�e
t the game).

2.1.2 Undire
ted graphs

On undire
ted graphs with a self loop on ea
h vertex, the 
omputation of

the labelling is easier sin
e any 
onne
ted 
omponent is �strongly 
onne
ted�.

Hen
e, the same algorithm gives a better 
omplexity as the labelling of the

subgraph indu
ed by the verti
es of weight 1 be
omes linear.

Proposition 2.8 Let (G,w, u) be a VertexNim position on an undire
ted

graph su
h that there is a self loop on ea
h vertex of G. De
iding whether

(G,w, u) is P or N 
an be done in time O(|V (G)|).
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Figure 2.5: lo-labelling fun
tion of a subgraph indu
ed by verti
es of weight 1
assuming every vertex has an undrawn self loop

Proof. Let G′
be the indu
ed subgraph of G su
h that

V (G′) = {v ∈ V (G) | w(v) = 1}.
If G = G′

, then (G,w, u) is an N -position if and only if |V (G)| is odd sin
e

the problem redu
es to �She loves move, she loves me not�. In the rest of

the proof, assume G 6= G′
.

• Case (1) We �rst 
onsider the 
ase where w(u) > 2. If there is a

winning move whi
h redu
es the weight of u to 0, then we play it and

win. Otherwise, redu
ing the weight of u to 1 and staying on u is a

winning move. Hen
e (G,w, u) is an N -position.

• Case (2) Assume w(u) = 1. Let nu be the number of verti
es of the


onne
ted 
omponent of G′
whi
h 
ontains u. We show that (G,w, u)

is an N -position if and only if nu is even by indu
tion on nu. If nu = 1,
then we are for
ed to redu
e the weight of u to 0 and move to another

vertex v having w(v) > 2, whi
h we previously proved to be a losing

move. Now assume nu > 2. If nu is even, we redu
e the weight of

u to 0 and move to an adja
ent vertex v with w(v) = 1, whi
h is a

winning move by indu
tion hypothesis. If nu is odd, then we redu
e

the weight of u to 0 and we are for
ed to move to an adja
ent vertex v.
If w(v) > 2, then we previously proved it is a losing move. If w(v) = 1,
this is also a losing move by indu
tion hypothesis. Therefore in that


ase, (G,w, u) is an N -position if and only if nu is even.
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Con
erning the 
omplexity of the 
omputation, note that when w(u) > 2,
the algorithm answers in 
onstant time. When w(u) = 1, we only need to

�nd the 
onne
ted 
omponent of G′

ontaining u and its order, whi
h 
an

be done in O(|V (G)|) time. Thus, the algorithm runs in O(|V (G)|) time. �

We now fo
us on the general 
ase where the self loops are optional. A

vertex of weight at least 2 with a self loop is still a winning starting point

for the same reason as in the previous studied 
ases, and lowering the weight

of a vertex to 0 gives a self loop to all its neighbours be
ause the graph is

undire
ted, so the verti
es of weight 1 are taken 
are of the same way as in

the above proposition. We show how to de
ide the out
ome of a position in

the following theorem.

Theorem 2.9 Let (G,w, u) be a Vertexnim position on an undire
ted

graph. De
iding whether (G,w, u) is P or N 
an be done in O(|V (G)||E(G)|)
time.

The proof of this theorem requires several de�nitions that we present

here.

De�nition 2.10 Let G be an undire
ted graph with a weight fun
tion

w : V → N>0 de�ned on its verti
es.

Let S = {u ∈ V (G) | ∀v ∈ V (G), w(u) 6 w(v)}.
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.

Let G̃ be the graph indu
ed by V (G) \ (S ∪ T ).
We de�ne a labelling luG,w of its verti
es as follows :

• ∀u ∈ S, luG,w(u) = P, ∀v ∈ T , luG,w(v) = N
• ∀t ∈ V (G)\(S ∪ T ), luG,w(t) = lu

G̃,w
(t).

Example 2.11 Figure 2.6 gives the lu labelling of an undire
ted weighted

graph. The lowest weight is 2, so all the verti
es having weight 2 are labelled
P. Then we know we 
an label all their unlabelled neighbours with N .

Proof. Let Gu be the indu
ed subgraph of G su
h that

V (Gu) = {v ∈ V (G) | w(v) = 1 or v = u}, and G′
be the indu
ed

subgraph of G su
h that

V (G′) = {v ∈ V (G) |w(v) > 2
(v, v) /∈ E(G)
∀t ∈ V (G), (v, t) ∈ E(G) ⇒ w(t) > 2}.

If G = Gu and w(u) = 1, then (G,w, u) is an N -position if and only if

|V (G)| is odd sin
e it redu
es to �She loves move, she loves me not�.

If G = Gu and w(u) > 2, we redu
e the weight of u to 0 and move to any

vertex if |V (G)| is odd, and we redu
e the weight of u to 1 and move to

any vertex if |V (G)| is even; both are winning moves, hen
e (G,w, u) is an
N -position.
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Figure 2.6: lu-labelling fun
tion of an undire
ted graph

In the rest of the proof we will assume that G 6= Gu. In the �rst three 
ases,

we assume u /∈ G′
.

• Case (1) Assume w(u) > 2 and there is a loop on u. If there is a

winning move whi
h redu
es the weight of u to 0, then we 
an play it

and win. Otherwise, redu
ing the weight of u to 1 and staying on u is

a winning move. Therefore (G,w, u) is an N -position.

• Case (2) Assume w(u) = 1.
Let n be the number of verti
es of the 
onne
ted 
omponent of

Gu whi
h 
ontains u. We show that (G,w, u) is an N -position if

and only if n is even by indu
tion on n. If n = 1, then we are

for
ed to redu
e the weight of u to 0 and move to another vertex

v, with w(v) > 2, whi
h was proved to be a losing move sin
e it


reates a loop on v. Now assume n > 2. If n is even, we redu
e

the weight of u to 0 and move to a vertex v satisfying w(v) = 1,
whi
h is a winning move by indu
tion hypothesis (the 
onne
ted


omponent of Gu 
ontaining u being un
hanged, apart from the

removal of u). If n is odd, we redu
e the weight of u to 0 and

move to some vertex v, 
reating a loop on it. If w(v) > 2, we

already proved this is a losing move. If w(v) = 1, it is a losing move

by indu
tion hypothesis. We 
an therefore 
on
lude that (G,w, u)
is an N -position if and only if n is even. Figure 2.7 illustrates this 
ase.
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Figure 2.7: Case 2: the 
onne
ted


omponent 
ontaining u has an odd size:

this is a P-position as w(u) = 1.
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Figure 2.8: Case 3: an N -position

sin
e u of weight w(u) > 1 has a neigh-

bour of weight 1.

• Case (3) Assume w(u) > 2 and there is a vertex v su
h that

(u, v) ∈ E(G) and w(v) = 1. Let n be the number of verti
es of the


onne
ted 
omponent of Gu whi
h 
ontains u. If n is odd, we redu
e

the weight of u to 1 and we move to v, whi
h we proved to be a winning

move. If n is even, we redu
e the weight of u to 0 and we move to v,
whi
h we also proved to be winning. Hen
e (G,w, u) is an N -position

in that 
ase. Figure 2.8 illustrates this 
ase.

• Case (4) Assume now u ∈ G′
. We show that (G,w, u) is N if and only

if luG′,w(u) = N by indu
tion on

∑
v∈V (G′) w(v). If

∑
v∈V (G′)w(v) =

2, we get G′ = {u} and we are for
ed to play to a vertex v su
h

that w(v) > 2 and v /∈ V (G′), whi
h we proved to be a losing

move. Assume

∑
v∈V (G′)w(v) > 3. If luG′,w(u) = N , we redu
e

the weight of u to w(u) − 1 and move to a vertex v of G′
su
h that

w(v) < w(u) and luG′,w(v) = P. Su
h a vertex exists by de�nition of

lu. Let (G1, w1, v) be the resulting position after su
h a move. Hen
e

luG′

1,w1
(v) = luG′,w(v) = P sin
e the only weight that has been re-

du
ed remains greater or equal to the one of v. And (G1, w1, v) is a
P-position by indu
tion hypothesis. If luG′,w(u) = P, the �rst player
is for
ed to redu
e the weight of u and to move to some vertex v. Let
(G1, w1, v) be the resulting position. First remark that w1(v) > 2 sin
e
u ∈ G′

. If she redu
es the weight of u to 0, she will lose sin
e v now

has a self loop. If she redu
es the weight of u to 1, she will also lose

sin
e (u, v) ∈ E(G1) and w1(u) = 1 (a

ording to 
ase (3)).

Assume she redu
ed the weight of u to a number w1(u) > 2. Thus

luG′

1,w1
(u) still equals P sin
e the only weight we modi�ed is the one

of u and it has been de
reased. If v /∈ G′
, i.e., v has a loop or there

exists t ∈ V (G1) su
h that (v, t) ∈ E(G1) and w1(t) = 1, then the

se
ond player wins a

ording to 
ases (1) and (3). If v ∈ G′
and
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Figure 2.9: Case 4: lu-labelling of the subgraph G′

luG′,w(v) = N , then luG′

1,w1
(v) is still N sin
e the only weight we

de
reased is the one of a vertex labelled P being a neighbour of u.
Consequently the resulting position makes the se
ond player win by

indu
tion hypothesis. If v ∈ G′
and luG′,w(v) = P , then we ne
essarily

have w(v) = w(u) in G′
. As luG′

1,w1
(u) = P and (u, v) ∈ E(G1), then

luG′

1,w1
(v) be
omes N , implying that the se
ond player wins by indu
-

tion hypothesis. Hen
e (G,w, u) is N if and only if luG′,w(u) = N .

Figure 2.9 shows an example of the lu labelling.

Con
erning the 
omplexity of the 
omputation, note that all the 
ases

ex
ept (4) 
an be exe
uted in O(|E(G)|) operations. Hen
e the 
omputation

of luG′,w(u) to solve 
ase (4) be
omes 
ru
ial. We just need to 
ompute the

strongly 
onne
ted 
omponent and the asso
iated dire
ted a
y
li
 graph to


ompute S and T , so in the worst 
ase, it 
an be done in O(|E(G)|) time.

And the number of times where S and T are 
omputed in the re
ursive

de�nition of lu is 
learly bounded by |V (G)|. All of this leads to a global

algorithm running in O(|V (G)||E(G)|) time.

�

2.2 Timber

Timber is an impartial game played on a dire
ted graph. On a move, a

player 
hooses an ar
 (x, y) of the graph and removes it along with all that is

still 
onne
ted to the endpoint y in the underlying undire
ted graph where

the ar
 (x, y) has already been removed. Another way of seeing it is to put a

verti
al domino on every ar
 of the dire
ted graph, and 
onsider that if one

domino is toppled, it topples the dominoes in the dire
tion it was toppled

and 
reates a 
hain rea
tion. The dire
tion of the ar
 indi
ates the dire
tion
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Figure 2.10: Playing a move in Timber

in whi
h the domino 
an be initially toppled, but has no in
iden
e on the

dire
tion it is toppled, or on the fa
t that it is toppled, if a player has 
hosen

to topple a domino whi
h will eventually topple it.

The des
ription of a position 
onsists only of the dire
ted graph on whi
h

the two players are playing. Note that it does not need to be strongly


onne
ted, or even 
onne
ted.

Example 2.12 Figure 2.10 gives an example of a move. The player whose

move it is 
hooses to remove the ar
 (x, y). The whole 
onne
ted 
omponent


ontaining y in the underlying undire
ted graph without the ar
 (x, y) is

removed with it.

Example 2.13 Figure 2.11 shows an exe
ution of the game. On a given

position, the player who is playing is 
hoosing the dark grey ar
, and all

that will disappear along with it is 
oloured in lighter grey. The xi and yi
indi
ate the endpoints of the 
hosen ar
. After the fourth move, the graph

is empty of ar
s, so the game ends. Note that some games 
an end leaving

several isolated verti
es, as well as no vertex at all.

In this se
tion, we present algorithms to �nd the normal out
ome of any


onne
ted dire
ted graph, and the Grundy-value of any orientation of paths.

2.2.1 General results

First, we see how to redu
e the problem to orientations of forests: playing

in a 
y
le removes the whole 
onne
ted 
omponent, and playing on an ar


going out of a degree-1 vertex leaves only that vertex in the 
omponent. In

both 
ases there are no more move available in the 
omponent after they

have been played, so it is natural to aim at redu
ing the former to the latter.

The only issue is how to deal with the ar
s whi
h were going in and out the


y
le. This is what we present in Theorem 2.14. Note that the 
y
le does

not need to be indu
ed, nor even elementary.
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Theorem 2.14 Let G be a dire
ted graph seen as a Timber position su
h

that there exists a set S of verti
es that forms a 2-edge-
onne
ted 
omponent

of G, and x, y two verti
es not belonging to V (G). Let G′
be the dire
ted

graph with vertex set

V (G′) = (V (G) \ S) ∪ {x, y}

and ar
 set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

Then G =+ G′
.

Proof. Let H be any game su
h that Left has a winning strategy on G+H
playing �rst (or se
ond). On G′+H, she 
an follow the same strategy unless

it re
ommends to 
hoose an ar
 between elements of S or Right 
hooses the

ar
 (y, x). In the �rst 
ase, she 
an 
hoose the ar
 (y, x), whi
h is still on

play sin
e any move removing (y, x) in G′
would remove all ar
 of S in G.

Both moves leave some H0 where Left has a winning strategy playing se
ond

sin
e the move in the �rst game was winning. In the se
ond 
ase, she 
an

assume he 
hose any ar
 of S and 
ontinue to follow her strategy. For similar

reasons, it is possible and it is winning.

The proof that Right wins G′+H whenever he wins G+H is similar. �

Using this redu
tion, the number of 
y
les de
reases stri
tly, so after

repeating the pro
ess as many times as possible (whi
h is a �nite number of

times), we end up with a dire
ted graph with no 
y
le, namely an orientation

of a forest.

Corollary 2.15 For any dire
ted graph G, there exists an orientation of a

forest FG su
h that G =+ FG and su
h an FG is 
omputable in quadrati


time.

In Corollary 2.15, the 
omplexity is important, as it is easy to produ
e

an orientation of a forest (even an orientation of a path) with any Grundy-

value:

de�ne Pn the oriented graph with vertex set

V (Pn) = {vi}06i6n

and ar
 set

A(Pn) = {(vi−1, vi)}16i6n.

Then the Timber position Pn has Grundy-value n.
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Example 2.16 Figure 2.12 shows an example of a dire
ted graph (on top)

and a 
orresponding forest (on bottom), obtained after applying the redu
-

tion from Theorem 2.14. The 
y
les are 
oloured grey and redu
ed to the

grey verti
es of the forest. The white verti
es denote the verti
es of degree 1
we add with an out-ar
 toward those grey verti
es. There might be several

su
h forests depending on the 
hoi
e of the 
omponent used for the redu
tion,

but they all share the same Grundy-value. Choosing maximal 2-
onne
ted


omponents when redu
ing leads to a unique forest with least number of

verti
es.

The next proposition allows us another redu
tion. In parti
ular, it gives

another proof that all forests that 
an be obtained from a graph G after the

redu
tion of Theorem 2.14 are equivalent (set k and ℓ to 0).

Proposition 2.17 Let T be an orientation of a tree su
h that there exist

three sets of verti
es {ui}06i6k, {vi}06i6k, {wi}06i6ℓ ⊂ V (G) su
h that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ) ⊂ A(G)

2. (uk, w0), (vk, wℓ) ∈ A(G).

3. u0 and v0 have in-degree 0 and out-degree 1.

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1.

Let T ′
be the orientation of a tree with vertex set

V (T ′) = V (T ) \ {vi}06i6k

and ar
 set

A(T ′) = A(T ) \ ({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}).

Then T =+ T ′
.

Proof. The proof is similar to the one of Theorem 2.14: playing on (vi−1, vi)
or (ui−1, ui) is similar (as well as (vk, wℓ) and (uk, w0)), and no move apart

from some (vj−1, vj) (and (vk, wℓ)) would remove the ar
 (ui−1, ui) without
removing the ar
 (vi−1, vi).

�

Note that we never used the fa
t we were 
onsidering the normal version

of the game when we proved both the redu
tions from Theorem 2.14 and

Proposition 2.17. That means they 
an be used in the misère version as

well.
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Figure 2.12: A Timber position and a 
orresponding orientation of a forest
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Figure 2.13: A Timber position and its image after redu
tion having di�erent

Grundy-values

2.2.2 Trees

Knowing we 
an 
onsider only forests without loss of generality, we now fo
us

on trees. Though we are not able to give the Grundy-value of any tree, whi
h

would have the problem 
ompletely solved (being able to �nd the out
ome

of any forest is a
tually equivalent to being able to �nd the Grundy-value

of any tree), we �nd their out
omes using two more redu
tions, one of them

leaving the Grundy-value un
hanged.

First, we note that if we 
an �nish the game in one move, that is we 
an

remove all the ar
s of the graph, the game is an N -position.

Lemma 2.18 Let T be an orientation of a tree su
h that there is a leaf v
of T with out-degree 1. Then o+(T ) = N , that is T is a next-player win

position.

Proof. Let x be the out-neighbour of v. The �rst player wins by toppling

the domino on the ar
 (v, x). �

The next lemma eliminates 
ouples of moves that keep being losing moves

throughout the whole game as long as they are both available. Unfortunately,

though this redu
tion keeps the out
ome of the position, it may 
hange its

Grundy-value, and we know some 
ases where the Grundy-value is 
hanged,

as well as some others where it is not:

• Figure 2.13 shows an example of a position whi
h 
hanges Grundy-

value after applying the redu
tion. On the left, the graph has Grundy-

value 3, and on the right, the redu
ed graph has Grundy-value 1.
• All P-positions have same Grundy-value (namely 0), so any P-position

that redu
es keeps the Grundy-value un
hanged. And Figure 2.14

shows an example of an N -position whi
h keeps the Grundy-value

un
hanged after applying the redu
tion: both positions have Grundy-

value 2.

Lemma 2.19 Let T1, T2 be two timber positions. Choose y ∈ V (T1),
z ∈ V (T2) and let x be a vertex disjoint from T1 and T2. Let T be the position

with vertex set

V (T ) = V (T1) ∪ {x} ∪ V (T2)

and ar
 set

A(T ) = A(T1) ∪ {(x, y), (x, z)} ∪A(T2).
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Figure 2.14: A Timber N -position and its image after redu
tion having the same

Grundy-value

Let T ′
be the position with vertex set

V (T ′) = V (T1) ∪ V (T2)

where y and z are identi�ed, and ar
 set

A(T ′) = A(T1) ∪A(T2).

Then o+(T ) = o+(T ′).

Proof. We show it by indu
tion on the number of verti
es of T ′
. If

V (T ′) = {y}, then there is no move in T ′
and T 
onsists in two ar
s

going out the same vertex. Hen
e o+(T ) = P = o+(T ′). Assume now

|V (T ′)| > 1. Assume the �rst player has a winning move in T . If the 
hosen
ar
 removes x from the game, 
hoosing the same ar
 in T ′

leaves the same

position. Otherwise, 
hoosing the same ar
 in T ′
leaves a position whi
h has

the same out
ome by indu
tion. Hen
e the �rst player has a winning move

in T ′
. The proof that she has a winning move in T if she has one in T ′

is

similar. �

Example 2.20 The redu
tion is from T to T ′
. Figures 2.15 and 2.16 illus-

trate the redu
tion by giving an example of an orientation of a tree and its

image after redu
tion. The initial graph has no move that empties it, so we

try to �nd a smaller graph with the same out
ome. The grey ar
s are the

ones we 
ontra
t, and the redu
tion 
annot be applied anywhere else on the

�rst tree. However, the redu
tion 
an again be applied on the grey ar
s of

the se
ond tree (and only them).

The next lemma presents a redu
tion whi
h preserves the Grundy-value.

When there are two orientations of paths dire
ted toward a leaf from a


ommon vertex x, none of these paths a�e
t the other, or the rest of the

tree. Hen
e we 
an repla
e them with just one path, whose length is the

Nim-sum of the lengths of the original paths.

Lemma 2.21 Let T0 be an orientation of a tree, w ∈ V (T0) a vertex, and

n,m ∈ N two integers. Let T be the position with vertex set

V (T ) = V (T0) ∪ {yi}16i6n ∪ {zi}16i6m
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Figure 2.15: An orientation of a tree seen as a Timber position

Figure 2.16: Its image after redu
tion, having the same out
ome
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and ar
 set

A(T ) = A(T0) ∪{(yi, yi+1)}16i6n−1

∪{(zi, zi+1)}16i6m−1

∪{(w, y1), (w, z1)}.

Let T ′
be the position with vertex set

V (T ′) = V (T0) ∪ {xi}16i6n⊕m

and ar
 set

A(T ′) = A(T0) ∪ {(xi, xi+1)}16i6(n⊕m)−1 ∪ {(w, x1)}.

Then o+(T + T ′) = P and o+(T ) = o+(T ′).

Proof. We prove it by indu
tion on |V (T0)| + n + m and show

that o+(T + T ′) = P whi
h means g(T ) = g(T ′) and thus implies that

o+(T ) = o+(T ′). If n+m = 0, T = T0 = T ′
.

Assume now |V (T0)| + n +m > 0. Any ar
 of T0 is in both T and T ′
,

thus if the �rst player 
hooses su
h an edge in one of T or T ′
then the se
ond

player 
an 
hoose the 
orresponding ar
 in T ′
or T , whi
h leaves a P-position

(either by indu
tion or be
ause the two remaining positions are the same).

Assume the �rst player 
hooses the ar
 (yi, yi+1) (or (w, y1) = (y0, y1)). If

(i ⊕ m) < (n ⊕ m), the se
ond player 
an 
hoose the ar
 (xi⊕m, x(i⊕m)+1)
(or (w, x1) if i⊕m = 0) whi
h leaves a P-position by indu
tion. Otherwise,

there exists j < m su
h that (i ⊕ j = n ⊕ m), and the se
ond player 
an


hoose the ar
 (zj , zj+1) whi
h leaves a P-position by indu
tion. Similarly,

we 
an prove that the se
ond player has a winning answer to any move of

the type (xi, xi+1) or (zi, zi+1). �

Example 2.22 Again, the redu
tion is from T to T ′
. Figures 2.17 and 2.18

illustrate the redu
tion by giving an example of an orientation of a tree

and its image after redu
tion. The initial graph has no move that empties

it, and the redu
tion from Lemma 2.19 
annot be applied, so we use the

other redu
tion to get a smaller tree having the same out
ome (even better,

having the same Grundy-value). The grey ar
s of the �rst tree are the ones

of the paths we merge, and the redu
tion 
annot be applied anywhere else

on the �rst tree. The grey ar
s of the se
ond tree are the ones of the paths

we 
reated by merging those of the �rst tree. The redu
tion 
an again be

applied on the se
ond tree, where it is even possible to apply the redu
tion

from Lemma 2.19.

A position for whi
h we 
annot apply the redu
tion from Lemma 2.19 or

Lemma 2.21 is 
alled minimal. A leaf path is a path from a vertex x to a

leaf y, with x 6= y, 
onsisting only of verti
es of degree 2, apart from y and

possibly x.
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Figure 2.17: An orientation of a tree seen as a Timber position

Figure 2.18: Its image after redu
tion, having the same out
ome
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The 
oming lemma is important be
ause it gives us the out
ome of a

minimal position. Thus after having redu
ed our initial position as mu
h as

we 
ould, we get its out
ome. Furthermore, if it is an N -position, it proposes

a winning move, that we 
an ba
ktra
k to get a winning move from the initial

position.

Lemma 2.23 A minimal position with out
ome P 
an only be a graph with

no ar
.

Proof. Let T be a minimal position with at least one ar
. If it has exa
tly

one ar
, it is obviously in N , so we 
an assume T has at least two ar
s.

Then there exists a vertex w at whi
h there are two leaf paths {xi}06i6n

and {yi}06i6m (x0 = w = y0). If (xn, xn−1) or (ym, ym−1) is an ar
, the �rst

player 
an 
hoose it and win. Now assume both (xn−1, xn) and (ym−1, ym)
are ar
s. As T is minimal, it 
annot be redu
ed using Lemma 2.19, so all

(xi, xi+1), (yi, yi+1), (w, x1) and (w, y1) are ar
s. But then we 
an apply the

redu
tion from Lemma 2.21, whi
h is a 
ontradi
tion. �

Applying redu
tions from Lemma 2.19 and Lemma 2.21 leads us to a

position where �nding the out
ome is easy: either the graph has no ar
 left

and it is a P-position or there is a move that empties the graph and it is an

N -position. Note that the redu
tion from Lemma 2.19 de
reases the number

of verti
es without in
reasing the number of leaves, and the redu
tion from

Lemma 2.21 de
reases the number of leaves without in
reasing the number

of verti
es, so they 
an only be applied a linear number of times. As �nding

where to apply the redu
tion 
an be done in linear time, this leads to a

quadrati
 time algorithm.

Theorem 2.24 We 
an 
ompute the out
ome of any 
onne
ted oriented

graph G in time O(|V (G)|2).

Note that for a tree, the number of edges is equal to the number of verti
es

minus one, and a 
onne
ted graph 
ontaining a 
y
le is always an N -position.

Hen
e, we 
an 
onsider O(|V (G)|) = O(|E(G)|) for the redu
tion part of the

algorithm sin
e �nding a 
y
le is linear in the number of verti
es.

Though this is enough to 
ompute the out
ome of any orientation of

trees, it does not give us its Grundy-value, ex
ept when we are 
onsidering a

P-position as they all have Grundy-value 0. The �rst redu
tion we presented

in this subse
tion may 
hange the Grundy-value of the position, but it is not

the 
ase of the se
ond redu
tion. Looking further on that dire
tion, we tried

to �nd a more general redu
tion that takes two leaf paths out of the same

vertex and repla
e them with only one leaf path out of that vertex, leaving

the rest of the graph unmodi�ed, and keeping the Grundy-value un
hanged.
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With this, we would redu
e the tree to a path, and as we 
an 
ompute

the Grundy-value of a path relatively e�
iently (see Theorem 2.26 below),

we would get an algorithm to 
ompute the Grundy-value of any orientation

of trees, leading to an algorithm to 
ompute the out
ome (and even the

Grundy-value) of any orientation of forests, and thus of any dire
ted graph.

Unfortunately, doing this on general leaf paths is not possible, as shown in

Example 2.25.

Example 2.25 De�ne P1 and P2 two orientations of paths with vertex set

V (Pi) = {xi, yi, zi}

and ar
 set

A(Pi) = {(xi, yi), (zi, yi)}

for both i ∈ {1, 2}. Consider that the verti
es identi�ed with a vertex of

the rest of the tree are x1 and x2. Assume there is an orientation of a path

P3 satisfying the above 
onditions. Identifying x1 and x2 without adding

anything leaves a path with Grundy-value 2, so P3 should have Grundy-

value 2. The moves that would remove the rest of the tree should ea
h leave

the same value as one of the moves that would remove the rest of the tree in

our 
hoi
e of P1 and P2, be
ause we 
annot ensure that these values would

appear in the rest of the tree, so they all should have Grundy-value 0, and
there should be at least one for ea
h value left by a move that would remove

the rest of the tree in our 
hoi
e of P1 and P2 for the same reasons, so there

should be at least one move in P3 that would remove the rest of the tree

and leave a position with Grundy-value 0. Among all those potential ar
s,

we look at the one 
losest to the leaf of that leaf path, and 
all it a. If

there are any ar
s 
loser to the leaf, they are all pointing towards the leaf,

and the Grundy-value of those ar
s, that are left alone after a player would

have moved on a, is equal to the number of ar
s. Hen
e there are no 
loser

ar
. There 
annot be any other ar
 in P3 that would remove the rest of

the tree, be
ause it would leave the ar
 a that still 
ould empty the graph,

whi
h means it would leave a position with Grundy-value di�erent from 0.
As the Grundy-value of P3 should be 2, the only possible P3 with the above


onditions is the graph with vertex set

V (P3) = {x3, y3, z3, t3}

and ar
 set

A(P3) = {(x3, y3), (y3, z3), (t3, z3)},

with the vertex we identify with a vertex of the rest of the tree being x3.
Unfortunately, if the rest of the tree is an isolated ar
 in whi
h we identify

the endpoint to a vertex of P1, P2 or P3, the two graphs do not have the

same Grundy-value: the one with P1 and P2 has Grundy-value 1 while the

one with P3 has Grundy-value 3.
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2.2.2.1 Paths

In the 
ase of paths, we 
an show additional results 
ompared to trees.

The same algorithm may be used, and we 
an even spare the redu
tion of

Lemma 2.21.

Using CGSuite [37℄, we determined the number of P-positions on paths of
length 2n for small n's. Imputing them in the On-line En
y
lopedia of Integer

Sequen
es [40℄ suggested that it 
orresponds to the nth
Catalan number,

and pointed at a referen
e [12℄, whi
h led to the following representation. A

position 
an be represented visually on a 2-dimensional graph on a latti
e:

wat
h the path horizontally from left to right, start at (0, 0) and let an ar


dire
ted leftward be a line joining the latti
e points (x, y) and (x+ 1, y + 1)
and an ar
 dire
ted rightward be the line joining (x, y) and (x+ 1, y − 1).

We 
all that representation the peak representation of a Timber position

on an orientation of a path.

A Dy
k path of length 2n is one of these paths that also ends at (2n, 0)
and whi
h never goes below the x-axis. More formally, a Dy
k path of length

2n is a path on a latti
e starting from (0, 0) and ending at (2n, 0) whi
h steps

are of the form ((x, y), (x + 1, y + 1)) and ((x, y), (x + 1, y − 1)) where the

se
ond 
oordinate is never negative.

We note that an orientation of a path is a P-position if and only if its

peak representation is a Dy
k path. This gives us the number of P-positions
that are paths of length 2k, the kth Catalan number ck = (2k)!

k!(k+1)! . And no

path of odd length is a P-position.
This is interesting sin
e there are few games where the number of

P-positions is known depending on the size of the data. Even for Nim whi
h

was introdu
ed a 
entury ago, no general formula is known yet.

We now look at the Grundy-values of paths. All followers of a position

of a Timber position are Timber positions whose graphs are indu
ed sub-

graphs of the original one, where two verti
es are in the same 
onne
ted


omponent if and only if they were in the same 
onne
ted 
omponent in the

original graph. When the graph is a path, the number of 
onne
ted indu
ed

subgraphs is quadrati
 in the length of the path (E(G) − i + 1 
hoi
es of

subgraphs with i edges, for any i). When you know the Grundy-values of

all the options of a game, the Grundy-value of this game 
an be 
omputed

in linear time. The number of options of a Timber position is the number

of its edges. It therefore su�
es to 
ompute and store the Grundy-values of

all subpaths of an orientation of a path by length in
reasing order to get the

Grundy-value of the original path in 
ubi
 time.

Theorem 2.26 We 
an 
ompute the Grundy-value of any orientation of

paths P in time O(|V (P )|3).
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1 1 1 1 1 1 1 1 1 1 1 1

2 1 0 2 1 2 0 2 1 0 2

2 2 3 2 2 3 3 2 2 3

3 3 3 2 3 0 3 3 3

4 3 3 3 1 1 2 4

4 3 2 4 1 0 5

4 4 5 4 4 6

5 5 5 5 6

6 6 6 6

6 7 7

7 8

8

Figure 2.19: Computing the Grundy-value of a path

Example 2.27 Figure 2.19 gives an example of a path and the Grundy-

value of all its subpaths, illustrating the algorithm: on the ith line are the

Grundy-values of subpaths of length i; on the jth 
olumn are the Grundy-

values of the subpaths whose leftmost ar
 is the jth of the original path. We


an 
onsider there is a 0th line whi
h only 
ontains 0's, but this is not ne
-
essary as the �rst line always only 
ontains 1's. We underlined the Grundy-

value of the whole path.

To 
ompute the value in 
ase (i, j), that is the Grundy-value of the

subpath 
ontaining the kth ar
 for all k between i and i + j − 1, you look

at ea
h of these edges and build the set of Grundy-values of the options of

the subpath: you start with an empty set of values; if the kth ar
 is dire
ted

toward the right, you add the value in 
ase (i, k − i) to your set; if the kth

ar
 is dire
ted toward the left, you add the value in 
ase (k+1, i+ j−k−1)
to your set. The value you put in 
ase (i, j) is the minimum non-negative

integer that does not appear in the set you just built.

2.3 Perspe
tives

In this 
hapter, we looked at the games VertexNim and Timber.

In the 
ase of VertexNim, we gave a polynomial-time algorithm to �nd

the normal out
ome of any undire
ted graph with a token on any vertex,

as well as the out
ome of any strongly 
onne
ted dire
ted graph with a self

loop on every vertex, and a token on any vertex. Then, we have a natural

question.
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Question 2.28 What is the 
omplexity of VertexNim played on a general

dire
ted graph?

Looking at another variant of Nim played on graphs, Vertex NimG

[9, 43℄, our results seem to apply to the variant where a vertex of weight 0
is not removed (see [16℄), but they do not if it is removed. In parti
ular, in

the latter 
ase, the problem is pspa
e-
omplete on graphs with a self loop

on ea
h vertex, even if the weight of verti
es is at most 2.

In the 
ase of Timber, we found the normal out
ome of any orientation

of trees, whi
h gives the normal out
ome of any 
onne
ted dire
ted graph

in polynomial time, and gave an algorithm to �nd the Grundy-value of any

orientation of paths in polynomial time.

We are now left with the following problem.

Question 2.29 Is there a polynomial-time algorithm to �nd the Grundy-

value of any Timber position on orientations of trees?

Note that it would give the out
ome of any Timber position on dire
ted

graphs, as a dire
ted graph redu
es to an orientation of a forest having the

same Grundy-value by Theorem 2.14, and from that forest, we would be able

to 
ompute the Grundy-value of ea
h 
onne
ted 
omponents as they are all

trees and we just need to sum the values to �nd the Grundy-value of the

original position, whi
h also gives its out
ome.

The 
omplexity of the problem is the same as �nding the out
ome of any

Timber position on dire
ted graphs, as a position has Grundy-value n if and

only if the se
ond player wins the game made of the sum of that position

with the orientation of a path with n ar
s, all dire
ted toward the same leaf,

and the Grundy-value of a Timber position is bounded by its number of

ar
s.
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Chapter 3

Partizan games

Partizan games are the natural extension of impartial games where the

players may have di�erent sets of moves. We say that a game is partizan

whenever the moves are not ne
essarily equal for the two players, but parti-

zan games 
ontain impartial games as well.

As with impartial games, there exists a fun
tion that assigns a value

to any partizan game. Two games having the same value are equivalent

under normal play, and vi
e versa. Hen
e, we identify those values with the


anoni
al forms of the games they represent. As an example, the 
anoni
al

forms of numbers are re
ursively de�ned as follows (with n, k being positive

integers and m any integer):

0 = {·|·}
n = {n − 1|·}

−n = {·| − n+ 1}
2m+1
2k

= {2m
2k

|2m+2
2k

}

The order between games represented by numbers is the same as in Q2.

Unfortunately, many values are not numbers. For example, an impartial

game with Grundy-value n would be denoted as having value ∗n, ex
ept
when n is 0 or 1, respe
tively denoted by 0 and ∗. Berlekamp, Conway and

Guy [4, 10℄ give a useful tool to prove some games are numbers:

Theorem 3.1 (Berlekamp et al. [4℄, Conway [10℄) [Simpli
ity the-

orem℄ Suppose for x = {xL|xR} that some number z satis�es z 
 xL and

z � xR for any Left option xL ∈ xL and any Right option xR ∈ xR, but
that no (
anoni
al) option of z satis�es the same 
ondition (that is, for any

option z′ ∈ zL ∪ zR, there exists a Left option xL ∈ xL su
h that z′ 6 xL or

there exists a Right option xR ∈ xR su
h that z′ > xR). Then x = z.

In other words, if there is a number z satisfying z 
 xL and z � xR for

any Left option xL ∈ xL and any Right option xR ∈ xR, then x is equivalent

to the number with smallest birthday satisfying this property.

To simplify proofs, we often do not state results on the opposite of games

on whi
h we proved similar results. This 
an be justi�ed by the following

proposition.

Proposition 3.2 Let G and H be any two games. If G >+ H, then

−G 6+ −H. As a 
onsequen
e, G ≡+ H ⇔ −G ≡+ −H.
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Proof. Assume G >+ H. Then Left wins G −H = (−H) − (−G) playing
se
ond. Hen
e −H >+ −G. �

In this 
hapter, we 
onsider three partizan games: Timbush, Toppling

Dominoes and Col. Timbush is the natural partizan extension of Timber,

where some ar
s 
an only be 
hosen by one player. In se
tion 3.1, we de�ne

the game, prove that any position 
an be redu
ed to a forest, as in Timber,

and give an algorithm to 
ompute the out
ome of any orientation of paths

and any orientation of trees where no ar
 
an be removed by both players.

Toppling Dominoes is a variant of Timbush, where the graph is a forest

of paths and all ar
s are bidire
tional. In se
tion 3.2, we de�ne the game,

prove the existen
e of some values appearing as 
onne
ted paths, and give

a uni
ity result about some of them. Col is a 
olouring game played on an

undire
ted graph. In se
tion 3.3, we de�ne the game and give the values of

graphs belonging to some in�nite 
lasses of graphs.

The results presented in Se
tion 3.1 are a joint work with Ri
hard

Nowakowski, while the results presented in Se
tions 3.2 and 3.3 are a joint

work with Paul Dorbe
 and Éri
 Sopena [14℄.
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3.1 Timbush

Timbush is the natural partizan extension of Timber, played on a dire
ted

graph with ar
s 
oloured bla
k, white, or grey. On her move, Left 
hooses
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x

y

t

z

x'
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Figure 3.1: Playing a move in Timbush

a bla
k or grey ar
 (x, y) of the graph and removes it along with all that is

still 
onne
ted to the endpoint y in the underlying undire
ted graph. On his

move, Right does the same with a white or grey ar
.

The des
ription of a position 
onsists of the dire
ted graph on whi
h the

two players are playing, and a 
olouring fun
tion from the set of ar
s to the

set of 
olours {black,white, grey}. Note that the dire
ted graph does not

need to be strongly 
onne
ted, or even 
onne
ted.

AllTimber positions areTimbush positions: just keep the same dire
ted

graph and 
onsider all ar
s are grey.

In all the �gures, white ar
s are represented with dashed arrows, and

bla
k ar
s are thi
ker, to avoid 
onfusion between the 
olours.

Example 3.3 Figure 3.1 gives an example of a Left move. Left 
hooses to

remove the bla
k ar
 (x, y). The whole 
onne
ted 
omponent 
ontaining y
in the underlying undire
ted graph without the ar
 (x, y) is removed with

it. She 
ould not have 
hosen the ar
 (z, t) be
ause it is white, but the grey
ar
 (x′, y′) is allowed to her.

In this se
tion, we present algorithms to �nd the normal out
ome of

any 
oloured orientation of a path, and the normal out
ome of any 
oloured


onne
ted dire
ted graph with no grey ar
.

3.1.1 General results

First, we see how to adapt the results obtained on Timber to Timbush.

The redu
tion to get an orientation of a forest from a dire
ted graph without


hanging the value is the same, but we now have to take 
are of the 
olours

of the ar
s too. We aim at keeping them the same, but we still need to �nd

the 
olour of the ar
 we add, and we 
hoose the 
olour that gives the same

possibilities as those given by the 
y
le. The proof follows the same pattern

as the proof of Theorem 2.14.
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Theorem 3.4 Let G be a dire
ted graph seen as a Timbush position su
h

that there exist a set of verti
es S that forms a 2-edge-
onne
ted 
omponent

of G, and x, y two verti
es not belonging to G. Let G′
be the dire
ted graph

with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and ar
 set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

keeping the same 
olours, where the 
olour of (y, x) is grey if the ar
s in S
yield di�erent 
olours, and of the unique 
olour of ar
s in S otherwise. Then

G ≡+ G′
.

Proof. Let H be any game su
h that Left has a winning strategy on G+H
playing �rst (or se
ond). On G′+H, she 
an follow the same strategy unless

it re
ommends to 
hoose an ar
 between elements of S or Right 
hooses the

ar
 (y, x). In the �rst 
ase, she 
an 
hoose the ar
 (y, x), whi
h is still in

play sin
e any move removing (y, x) in G′
would remove all ar
s of S in G.

Both moves leave some H0 where Left has a winning strategy playing se
ond

sin
e the move in the �rst game was winning. In the se
ond 
ase, she 
an

assume he 
hose any ar
 of S and 
ontinue to follow her strategy. For similar

reasons, it is possible and it is winning.

The proof that Right wins G′+H whenever he wins G+H is similar. �

Again, we get the 
orollary that leaves us with a forest.

Corollary 3.5 For any dire
ted graph G, there exists an orientation of a

forest FG su
h that G ≡+ FG and FG is 
omputable in quadrati
 time.

Example 3.6 Figure 3.2 shows an example of a dire
ted graph (on top) and

a 
orresponding forest (on bottom), obtained after applying the redu
tion

from Theorem 3.4. Light grey areas surround the 
y
les, whi
h are redu
ed

to the grey verti
es of the forest. The white verti
es denote the verti
es of

degree 1 we add with an out-ar
 toward those grey verti
es. There might be

several su
h forests depending on the 
hoi
e of the 
omponent used for the

redu
tion, but they all share the same value. Choosing maximal 2-
onne
ted


omponents when redu
ing leads to a unique forest with least number of

verti
es.

We 
an also adapt the proposition giving us a redu
tion removing leaf-

paths with ar
s dire
ted from the leaf, but we also need to pay attention to

the 
olours, whi
h gives extra 
onditions.
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Figure 3.2: A Timbush position and a 
orresponding orientation of a forest
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Proposition 3.7 Let T be an orientation of a tree su
h that there exist three

sets of verti
es {ui}06i6k,{vi}06i6k,{wi}06i6ℓ ⊂ V (G) su
h that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ ⊂ A(G).

2. {(uk, w0), (vk, wℓ)}) ⊂ A(G).

3. u0 and v0 have in-degree 0 and out-degree 1.

4. for all 1 6 i 6 k, ui and vi have in-degree 1 and out-degree 1.

5. for all 1 6 i 6 k, (ui−1, ui) and (vi−1, vi) have the same 
olour.

6. (uk, w0) and (vk, wℓ) have the same 
olour.

Let T ′
be the orientation of a tree with vertex set

V (T ′) = V (T )\{vi}06i6k

and ar
 set

A(T ′) = A(T )\({(vi−1, vi)}16i6k ∪ {(vk, wℓ)})

keeping the same 
olours. Then T ≡+ T ′
.

Proof. The proof is similar to the one of Theorem 3.4, playing on (vi−1, vi)
or (ui−1, ui) is similar (as well as (vk, wℓ) and (uk, w1)), and no move apart

from some (vj−1, vj) (and (vk, wℓ)) would remove the ar
 (ui−1, ui) without
removing the ar
 (vi−1, vi). �

We now fo
us on trees again. Before going to spe
i�
 
ases, we give the

analog of Lemma 2.19 in the partizan version. Note again that it sometimes


hanges the value of the game, and it sometimes does not, using the same

examples as in Figures 2.13 and 2.14 as all positions of Timber are positions

of Timbush.

Lemma 3.8 Let T1, T2 be two Timbush positions. Choose y ∈ V (T1),
z ∈ V (T2) and let x be a vertex not belonging to V (T1) or V (T2). Let T
be the position with vertex set

V (T ) = V (T1) ∪ {x} ∪ V (T2)

and ar
 set

E(T ) = E(T1) ∪ {(x, y), (x, z)} ∪E(T2)

where (x, y) and (x, z) are either both grey or of non-grey di�erent 
olours

and the other ar
s keep the same 
olours. Let T ′
be the position with vertex

set

V (T ′) = V (T1) ∪ V (T2)
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where y and z are identi�ed, and ar
 set

E(T ′) = E(T1) ∪ E(T2)

keeping the same 
olours for all ar
s. Then o+(T ) = o+(T ′).

Proof. We show it by indu
tion on the number of verti
es of T ′
. If

V (T ′) = {y}, then there is no move in T ′
and T is either 1 + (−1) = 0 or

∗ + ∗ = 0. Hen
e o+(T ) = P = o+(T ′). Assume now |V (T ′)| > 1. Assume

Left has a winning move in T . This winning move 
annot be by 
hoosing

(x, y) or (x, z) be
ause Right would 
hoose the other move and win. If the


hosen ar
 removes x from the game, 
hoosing the same ar
 in T ′
leaves

the same position. Otherwise, 
hoosing the same ar
 in T ′
leaves a position

whi
h has the same out
ome by indu
tion. Hen
e Left has a winning move

in T ′
. The proof that Left has a winning move in T if she has one in T ′

and that Right has a winning move in T if and only if he has one in T ′
are

similar. �

Example 3.9 Again, the redu
tion is from T to T ′
. Figures 3.3 and 3.4

illustrate the redu
tion by giving an example of an orientation of a tree and

its image after redu
tion. Not even one player has a move that empties the

initial graph, so we try to �nd a smaller graph with the same out
ome. The

ar
s in light grey areas are the ones we 
ontra
t, and the redu
tion 
annot be

applied anywhere else on the �rst tree. The dark grey area indi
ates a pair

of ar
s going out a degree-2 vertex, whi
h 
annot be 
ontra
ted be
ause its


olours do not mat
h the statement of Lemma 3.8. However, the redu
tion


an again be applied on the ar
s in the light grey areas of the se
ond tree

(and only on them).

3.1.2 Paths

Though �nding an e�
ient algorithm whi
h gives the normal out
ome of any

orientation of trees has eluded us, we 
an determine the normal out
ome of

any orientation of paths.

On paths, we 
an 
ode the problem with a word. The letter K (resp. C,
Q) would represent a bla
k (resp. grey, white) ar
 dire
ted leftward, while

Y (resp. J , D) would represent a bla
k (resp. grey, white) ar
 dire
ted

rightward. Let w = w1w2 · · ·w|w|.

As in Se
tion 2.2, we 
an see it as a row of dominoes, ea
h 
oloured bla
k,

grey or white, that would topple everything in one dire
tion when 
hosen,

where 
hosen dominoes 
an only be toppled fa
e up, with Left only being

allowed to 
hoose bla
k or grey dominoes, and Right only being allowed to


hoose white or grey dominoes. The position is read from left to right.

Example 3.10 Figure 3.5 shows an orientation of a path, the row of domi-

noes and the word used for 
oding it.
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Figure 3.3: An orientation of a tree seen as a Timbush position

Figure 3.4: Its image after redu
tion, having the same out
ome
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KQYJYQKJCKDKDJ

Figure 3.5: A Timbush position, the 
orresponding row of dominoes and the


orresponding word

We say a domino is right-topplable if it 
orresponds to an ar
 dire
ted

rightward, that is if it is represented by a Y , a J or a D. Likewise, a domino

represented by a K, a C or a Q is said to be left-topplable.

The next lemma is quite useful as it tells us that if we have a winning

move for one player, then the only possible winning move going in the same

dire
tion for the other player is the exa
t same move, if available. This is

natural as if they were di�erent winning moves, one player would be able to

play their move after the other player, and leave the same position as if they

had played it �rst. Nevertheless, it is still possible for one player to have

several winning moves going in the same dire
tion when their opponent has

no winning move going in that dire
tion. And it is also possible that the two

players have di�erent winning moves, if they topple in di�erent dire
tions.

Lemma 3.11 If both players have a winning move toppling rightward, then

these moves are on the same domino.

Proof. Assume Left has a winning move toppling the right-topplable domino

wi and Right has a winning move toppling the right-topplable domino wj .

If i < j, after Right topples wj , Left 
an topple wi, leaving the game in

the same position as if she had toppled wi right in the beginning, whi
h is

a winning move, and toppling wj was not winning for Right. The proof is

similar if i > j. �

We de�ne the following three sets of words:

L = {KY,KJ} ∪ {CY DnY,CY DnJ}n∈N
R = {QD,QJ} ∪ {CDY nD,CDY nJ}n∈N
E = {KD,CJ,QY }

The reader would have re
ognised E as the set of subwords that 
an be

deleted without modifying the normal out
ome of the path using Lemma 3.8.

In the following, we then often assume the position does not 
ontain any

element of E as a subword.
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The sets L and R would represent the sets of subwords that Left and

Right would need to appear �rst to have a winning move on a right-topplable

domino when the redu
ed word starts with a left-topplable domino, as we

prove in Lemma 3.13.

The next lemma gives information on subwords of a word representing a

Timbush position. In parti
ular, it helps eliminating 
ases when we prove

Lemma 3.13.

Lemma 3.12 Let w be a word starting with a C and ending with a J su
h

that all dominoes are right-topplable ex
ept the �rst one. Then w 
ontains a

subword in L ∪R ∪ E.

Proof. If w2 = J , then w1w2 = CJ ∈ E. Assume w2 = Y . Let

k = min{i > 3 | wi ∈ {Y, J}}. The index k is well-de�ned as w|w| = J , and
w1w2 · · ·wk ∈ L. We 
an prove that w 
ontains a subword in R if w2 = D
in a similar way. �

The next lemma gives a winning move toppling right when it exists and

the word starts with a left-topplable domino (when the word starts with a

right-topplable domino, toppling that domino is a winning move). We here

assume the word 
ontains no subword belonging to E, as removing them

does not 
hange the out
ome of the position.

Lemma 3.13 Let w be a word with no element of E as a subword, that

starts with a left-topplable domino. Let x be the leftmost o

urren
e of an

element of L ∪R as a subword of w if one exists. Then:

• if x ∈ L, Left is the only player having a winning move in w toppling

rightward

• if x ∈ R, Right is the only player having a winning move in w toppling

rightward

• if no su
h x exists, no player has a winning move in w toppling right-

ward.

Proof. First assume no element of L ∪ R appears as a subword of w. As

{KY,KJ,KD,QY,QJ,QD} ⊂ L∪R∪E, no K or Q domino 
an be followed

by a right-topplable domino in w. If there was a J domino, the rightmost

left-topplable domino at its left would be a C domino. But then, it would


ontain a subword in L ∪R ∪ E by Lemma 3.12. And su
h a left-topplable

domino exists as w1 is left-topplable. So there are no J domino in w. If Left
topples a Y domino, the rightmost left-topplable domino at its left would be

a C domino. If that C domino is not immediately followed by the Y domino

Left toppled, it would be followed by a D domino, otherwise there would be

a subword of w whi
h is in L. Then, toppling that C domino is a winning

move for Right. We 
an prove that toppling a D domino is not a winning

move for Right in a similar way.
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Now assume x exists and is in L. We show that toppling the rightmost

domino of x is a winning move for Left. Let w′
be the resulting position after

this move. The position w′

ontains no element of L∪R∪E as a subword and

starts with a left-topplable domino, so Right has no winning move toppling

rightward. Hen
e, we 
an assume Right would topple a domino leftward.

If Right topples a domino whi
h is not part of x, Left topples the leftmost

domino of x, whi
h is a winning move. Otherwise, x = CY DiY or CYDiJ
for some i and Right would have toppled the C domino, whi
h leaves an

L-position. We now show that no Right's move toppling rightward in w is

winning. By Lemma 3.11, if Right has a winning move toppling rightward,

it would be by toppling the rightmost domino of x. But then, Left wins by
toppling the leftmost domino of x.

We 
an prove that Right is the only player having a winning move top-

pling rightward if x exists and is in L in a similar way. �

Example 3.14 Figure 3.6 gives three rows of dominoes, with the words


oding it, ea
h of them starting with a left-topplable domino and having no

subword in E. On the �rst row, the leftmost apparition of a subword in L∪R
is KJ , so Left 
an win the game playing �rst by toppling that J domino. On

the se
ond row, the leftmost apparition of a subword in L ∪R is CDY Y D,

so Right 
an win the game playing �rst by toppling that last D domino. On

the third row, the word 
ontains no subword of L ∪ R, so no player has a

winning move toppling rightward. On the �rst two rows, that winning move

is underlined, and the domino 
orresponding is pointed at. Note that there

might be other winning moves toppling rightward, the se
ond J of the �rst

row for instan
e.

When a word starts with a right-topplable domino, 
hoosing it is a win-

ning move. Using that with Lemmas 3.11 and 3.13, we 
an �nd whi
h player


an win toppling a domino rightward. As the same observations 
an be made

about left-topplable winning moves, we get the out
ome of any word in linear

time.

Theorem 3.15 We 
an 
ompute the out
ome of any word w in time O(|w|).

We end this study on paths by giving a 
hara
terisation of Timbush

P-positions on paths.

Theorem 3.16 Let w be a word representing a Timbush P-position, su
h
that no subword of w is in E. Then w is the empty word.

Proof. Assume w is not the empty word. As it is a P-position, it starts
with a left-topplable domino, and it has no word of L or R as a subword.

Therefore, we 
an prove, as in the proof of Lemma 3.13, that it 
ontains no

J domino. By symmetry, it does not 
ontain any C domino. But neither
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CCDDYKJJCQQDKQCY

QKCDYYDYCKYDJDCCKQJ

KCYQQCKCDYYYCKQKQ

Figure 3.6: Words representing Timbush positions with a winning move toppling

rightward underlined when it exists

a K domino nor a Q domino 
an be followed by a right-topplable domino

without w having a subword belonging to L∪R∪E. Hen
e all dominoes are

left-topplable. But that would mean the last domino is left-topplable, and

whoever plays it wins the game, 
ontradi
ting the fa
t that w is a P-position.
Hen
e w has to be the empty word. �

We 
an therefore 
ount the number of Timbush path P-positions of

length 2n, given by the formula 3ncn, where cn is the nth
Catalan number

(2n)!
n!(n+1)! , as well as 
on
lude there would be no Timbush path P-positions
of odd length.

3.1.3 Bla
k and white trees

We now look at general orientations of trees again, but add a restri
tion on

the 
olours used, by forbidding any ar
 to be 
oloured grey.

Note that dire
ted graphs having no grey ar
 might have grey ar
s that

appear when redu
ed to orientations of forests using Theorem 3.4, if they


ontain a two-
oloured 
y
le, but for su
h 
onne
ted graphs, the out
ome is

always N . It is also possible to get a bla
k and white 
oloured orientation

of a forest equivalent to the original graph by dupli
ating ea
h grey ar
 with

the leaf from whi
h it originates, leaving a bla
k ar
 and a white ar
.

Example 3.17 Figure 3.7 shows an example of a dire
ted graph (on the

left) and a 
orresponding forest (on the right), obtained after applying the
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redu
tion from Theorem 3.4 and repla
ing ea
h grey ar
 by a bla
k ar


and a white ar
. Light grey areas surround the 
y
les, whi
h are redu
ed

to the grey verti
es of the forest. The white verti
es denote the verti
es

of degree 1 we add with an out-ar
 toward those grey verti
es. When the

2-
onne
ted 
omponent is mono
hromati
, we only add one of these white

verti
es, whereas we add two if it 
ontains both bla
k ar
s and white ar
s.

There might be several su
h forests depending on the 
hoi
e of the 
omponent

used for the redu
tion, but they all share the same value. Choosing maximal

2-
onne
ted 
omponents when redu
ing leads to a unique forest with least

number of verti
es.

Lemma 3.8 a
ts as Lemma 2.19, but we also need to �nd analogous of

Lemma 2.18 and 2.21 to �nd the out
ome of a bla
k and white tree.

We �rst re
all the de�nition of a leaf-path: a leaf-path is a path from a

vertex x to a leaf y, with x 6= y, 
onsisting only of verti
es of degree 2, apart
from y and possibly x.

The next lemma is analogous to Lemma 2.18, that is a way to �nd a

winning move in a minimal position, though it may appear in non-minimal

positions as well. Nevertheless, in a non-minimal position, we would need to

�nd a winning move for ea
h player to be able to stop the analysis without

redu
ing any more.

Lemma 3.18 Let T be a bla
k and white 
oloured orientation of a tree su
h

that there is a leaf v of T with out-degree 1 or a vertex u with in-degree

0 and out-degree 2 from whi
h there is a leaf-path in whi
h all ar
s are

dire
ted toward the leaf. If all ar
s in
ident with v or u are bla
k, then

T ∈ L+ ∪ N+
, that is Left wins the game playing �rst. If they are all white,

then T ∈ R+ ∪ N+
.

Proof. Assume we are in the �rst 
ase, with the ar
 in
ident to v being

bla
k. Let x be the out-neighbour of v. If Left starts, she wins by toppling

the domino on the ar
 (v, x), as that move empties the graph.

Assume now we are in the se
ond 
ase, with the ar
s in
ident to u being

bla
k. Let x be the out-neighbour of u further from the leaf 
onsidered in

the leaf-path. If Left starts, she wins by toppling the domino on the ar


(u, x), as Right will never be able to remove the other ar
 in
ident to u and

Left empties the graph when she plays it.

The proof of the 
ases where the ar
s in
ident to v or u are white is

similar. �

The next lemma is an analogous of Lemma 2.21, that is a way to trans-

form two leaf-paths with all ar
s dire
ted towards the leaves into only one

leaf-path. As in Lemma 2.21, the game after redu
tion is equivalent in nor-

mal play to the game before redu
tion.
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Figure 3.7: A bla
k and white Timbush position and a 
orresponding bla
k and

white orientation of a forest
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Lemma 3.19 Let T0 be a bla
k and white 
oloured orientation of a tree,

u ∈ V (T0) a vertex, and n,m, ℓ ∈ N three integers. Let P1 (resp. P2, P3) be

a bla
k and white 
oloured orientation of a path with vertex set

{xi}06i6n(resp. {yi}06i6m, {zi}06i6ℓ)

and ar
 set

{(xi, xi+1)}06i6(n−1)(resp. {(yi, yi+1)}06i6m−1, {(zi, zi+1)}06i6ℓ−1).

Let T be the position with vertex set

V (T ) = V (T0) ∪ V (P2) ∪ V (P3)

where u, y0 and z0 are identi�ed and ar
 set

A(T ) = A(T0) ∪A(P2) ∪A(P3)

sharing the same 
olours as in T0, P2 or P3.

Let T ′
be the position with vertex set

V (T ′) = V (T0) ∪ V (P1)

where u and x0 are identi�ed and ar
 set

E(T ′) = E(T ) ∪ E(P1)

sharing the same 
olours as in T0 or P1.

Then o+(T − T ′) = o+(P2 + P3 − P1).

Proof. We prove it by indu
tion on |V (T0)|+ n+m+ ℓ. If n+m+ ℓ = 0,
T = T0 = T ′

, P1 = P2 = P3 = {·|·} and o+(T −T ′) = P = o+(P2+P3−P1).

Assume now |V (T0)|+ n+m+ ℓ > 0. Assume Left has a winning move

in P2 +P3 −P1. She 
an play that move in T −T ′
, whi
h is a winning move

by indu
tion hypothesis. Similarly, we 
an prove Right has a winning move

in T − T ′
if he has one in P2 + P3 − P1. Assume now Left has no winning

move in P2 + P3 − P1, i.e. P2 + P3 − P1 6 0. Any dire
ted edge of T0 is

both in T and T ′
, thus if Left 
hooses su
h an edge in one of T or −T ′

then

Right 
an 
hoose the 
orresponding ar
 in −T ′
or T , whi
h leaves either a

P-position if the move topples u or if P2 + P3 − P1 = 0 by indu
tion, or an

R-position by indu
tion otherwise. Assume Left 
hooses an ar
 of P2, P3 or

−P1 in the game T−T ′
. As these paths are numbers that only have numbers

as options (by Berlekamp's rule [4℄), it 
an only de
rease the value of the

remaining path, so it is a losing move by indu
tion hypothesis. Similarly, we


an prove Right has no winning move in T − T ′
if he has no winning move

in P2 + P3 − P1. �
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By repla
ing two leaf-paths with all ar
s dire
ted towards the leaves by

one leaf-path having the value of the sum of their values and all ar
s dire
ted

towards its leaf, we therefore get an equivalent position. This repla
ement

is always possible as a path with all ar
s dire
ted toward the same leaf 
an

be seen as a Ha
kenbush string rooted on the vertex with in-degree 0 (and
this transformation is a bije
tion); all bla
k and white Ha
kenbush strings

yield dyadi
 number values, and any dyadi
 number value 
an be obtained

by a unique bla
k and white Ha
kenbush string using Berlekamp's rule [4℄.

Example 3.20 Figures 3.8 and 3.9 illustrate the redu
tion by giving an ex-

ample of an orientation of a tree and its image after redu
tion. On the initial

graph, Left 
an win by playing the a ar
, but we still need to know if Right

has a winning move to determine if it is an N -position or an L-position. The
redu
tion from Lemma 3.8 
annot be applied, so we use the other redu
tion

to get a smaller tree having the same out
ome (even better, having the same

value). Light grey areas on the �rst tree surround the leaf-paths we merge,

and the redu
tion 
annot be applied anywhere else on the �rst tree. Ea
h

of these leaf-paths starts with a grey vertex and all other verti
es are white.

The same pattern is used on the se
ond tree to dete
t the new path obtained

by merging those of the �rst tree. The redu
tion 
an again be applied on the

se
ond tree, on paths surrounded by light grey areas, and even the redu
tion

from Lemma 3.8 on the ar
s surrounded by the dark grey area.

Lemma 3.19 is true even if some of the ar
s are grey, but in this 
ase, it

is not always possible to �nd a single leaf-path whose value is the sum of the

two original ones.

As in Se
tion 2.2, a position for whi
h we 
annot apply the redu
tion

from Lemma 3.8 or Lemma 3.19 is 
alled minimal. For the same reason as

in Lemma 3.11, to have both players having in the same leaf-path a winning

move toppling not toward the leaf of that leaf-path, it would have to be by

toppling the same domino, whi
h is not possible here sin
e we are dealing

with bla
k and white Timbush positions. From Lemma 3.18, we know what

su
h a winning move looks like and Lemma 3.13 tells us that only leaf-paths

satisfying hypothesis of Lemma 3.18 may have a winning move toppling the

rest of the tree when the position is minimal. In a minimal position, a leaf-

path where no player has a winning move not toppling toward the leaf must

have all ar
s dire
ted toward the leaf, as otherwise we 
ould redu
e the game

using Lemma 3.8. Therefore, we get the following lemma about P-positions.

Lemma 3.21 A minimal position with out
ome P 
an only be a graph with

no ar
.

Proof. Let T be a minimal position with at least one ar
. If it has exa
tly

one ar
, it is obviously in L ∪ R, depending of the ar
 
olour, so we 
an

assume T has at least two ar
s. Then there exists a vertex w at whi
h there
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a

Figure 3.8: An orientation of a tree seen as a Timbush position

Figure 3.9: Its image after redu
tion, having the same out
ome
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are two leaf-paths {xi}06i6n and {yi}06i6m (x0 = w = y0). If (xn, xn−1) or
(ym, ym−1) is an ar
, the player whi
h 
an topple it 
an 
hoose it and win

playing �rst. Now assume both (xn−1, xn) and (ym−1, ym) are ar
s. As T
is minimal, it 
annot be redu
ed using Lemma 3.8, so if one of (xi+1, xi),
(yi+1, yi), (x1, w) or (y1, w) is an ar
, the one with verti
es of greater index,

say (xi+1, xi), has to share the 
olour of the ar
 (xi+1, xi+2). Then the player

whi
h 
an topple (xi+1, xi) 
an 
hoose it and win playing �rst. Assume now

all (xi, xi+1), (yi, yi+1), (w, x1) and (w, y1) are ar
s. Then we 
an apply the

redu
tion from Lemma 3.19, whi
h is a 
ontradi
tion. �

Finding the out
ome of a minimal position now be
omes a formality. If

there is no ar
, we are dealing with a P-position. If there is just one ar
, the
out
ome is L if the ar
 is bla
k and R if it is white. When there are two ar
s

or more, we 
he
k in ea
h leaf-path who has a winning move not toppling

the leaf of that leaf-path. If both players have su
h a move, we are dealing

with an N -position. Otherwise, the only player who has su
h a move, and

su
h a player exists sin
e there is a vertex at whi
h there are two leaf-paths

and one of these paths has to yield su
h a winning move for the same reason

as in the proof of Lemma 3.21 sin
e the position is minimal, wins the game

whether they play �rst or se
ond. Indeed, if the other player does not play

an ar
 of a leaf-path, it leaves a vertex at whi
h there were two leaf-paths

whi
h are still there and where the former player 
an win; if they play on an

ar
 of a leaf-path that topples toward the leaf of that leaf-path, the situation

is the same unless the tree was a path from the beginning and Lemma 3.13

(and its 
ounterpart on left-topplable winning moves) 
ould 
on
lude even

before the move was played; if they play on an ar
 of a leaf-path that does

not topple toward the leaf of that leaf-path, it 
annot be a winning move by

assumption. Note that the redu
tion from Lemma 3.8 de
reases the number

of verti
es without in
reasing the number of leaves, and the redu
tion from

Lemma 3.19 de
reases the number of leaves without in
reasing the number

of verti
es, so they 
an only be applied a linear number of times. As �nding

where to apply the redu
tion 
an be done in linear time, this leads to a

quadrati
 time algorithm.

Theorem 3.22 We 
an 
ompute the out
ome of any bla
k and white 
on-

ne
ted oriented graph G in time O(|V (G)|2).

Note that for a tree, the number of edges is equal to the number of

verti
es minus one, and the redu
tion to get an orientation of a tree from a


onne
ted oriented graph 
ontaining a 
y
le 
an be done in time O(|V (G)|2).
Hen
e, we 
an 
onsider O(|V (G)|) = O(|E(G)|) for the se
ond part of the

algorithm.
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LLRELER

Figure 3.10: A row of dominoes and the 
orresponding Timbush position

3.2 Toppling Dominoes

Toppling Dominoes is a partizan game, introdu
ed by Albert

Nowakowski and Wolfe in [1℄, played on one or several rows of dominoes


oloured bla
k, white, or grey. On her move, Left 
hooses a bla
k or grey

domino and topples it with all dominoes (of the same row) at its left, or

with all dominoes (of the same row) at its right. On his turn, Right does

the same with a white or grey domino.

To des
ribe a one row Toppling Dominoes game, we just give the

word formed by the 
olours of its dominoes read from left to right. The

bla
k, white and grey dominoes are also symbolised respe
tively by an L (for

Left or bLa
k), an R (for Right ≈ white) and an E (for Either or grEy). For

example, LLERR represents a Toppling Dominoes game with two bla
k

dominoes followed by a grey then two white dominoes.

A Toppling Dominoes position with n dominoes 
an be seenas a Tim-

bush position on a path with 2n ar
s, ea
h domino being represented by

two ar
s sharing the same 
olour (as the domino) pointing toward the same

vertex. See Figure 3.10 for an example.

A �rst easy observation on Toppling Dominoes is that the only game

on one row that has out
ome P is the empty row. Indeed, if there is at least

one domino, any player who 
an play a domino at one end of the line 
an

win playing �rst. So if both extremities of the game are bla
k, the game

has out
ome L, if both are white, the game has out
ome R, otherwise the

game has out
ome N . This uniqueness of the 0 game is rather unusual, and

a natural question that arises is the following :

Question 3.23 In the game Toppling Dominoes, are there many equiva-

len
e 
lasses with a unique element 
onsisting of only one row? Or are there

many games with few representations in a single row?

Some initial study of this question was given by Fink, Nowakowski, Siegel

and Wolfe in [17℄. They gave mu
h 
redit to this question with the following

result:

Theorem 3.24 (Fink et al. [17℄) All numbers appear uniquely in Top-

pling Dominoes, i.e. if two games G and G′
have value a same number,

then they are identi
al.

A ni
e 
orollary of this result is that numbers in Toppling Dominoes

are ne
essarily palindromes, sin
e they equal their reversal. In the following,
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for a given number x, we denote by x the unique Toppling Dominoes

game with value x.

Fink et al. 
on
lude [17℄ with a series of 
onje
tures, some of whi
h

are inspired by Theorem 3.24. They reformulate Theorem 3.24 as follows,

expli
itly des
ribing for a number x the unique Toppling Dominoes games

with value x.

Theorem 3.25 (Fink et al. [17℄) If a game G has value a number in


anoni
al form {a|b}, then G is the Toppling Dominoes game aLRb.

Their �rst 
onje
ture was that a similar result is also true when a and b
are numbers but not the resulting game:

Conje
ture 3.26 (Fink et al. [17℄) Let a and b be numbers with a > b,
the game {a|b} is given (uniquely) by the Toppling Dominoes game aLRb.

In the following, we settle this 
onje
ture. We �rst prove that the game

aLRb is indeed the game {a|b}, but we then show that aEb also has value

{a|b}. However, we prove that there are no other Toppling Dominoes

game with that value, namely:

Theorem 3.27 Let a > b be numbers and G be a Toppling Dominoes

game. The value of G is {a|b} if and only if G is aLRb, aEb or one of their

reversals.

The proof of this result is given in Subse
tion 3.2.2. Fink et al. proposed

two similar 
onje
tures in [17℄, for the games

{
a
∣∣{b|c}

}
and

{
{a|b}

∣∣{c|d}
}
.

Conje
ture 3.28 (Fink et al. [17℄) Let a, b and c be numbers with

a > b > c. The game

{
a
∣∣{b|c}

}
is given (uniquely) by the Toppling Domi-

noes game aLRcRLb.

Conje
ture 3.29 (Fink et al. [17℄) Let a, b, c and d be numbers with

a > b > c > d. The game

{
{a|b}

∣∣{c|d}
}
is given (uniquely) by the Toppling

Dominoes game bRLaLRdRLc.

We propose the following results to settle the 
onje
tures.

Theorem 3.30 If a > b > c are numbers, then aLRcRLb has value{
a
∣∣{b|c}

}
. Moreover, if a > b, then aEcRLb also has value

{
a
∣∣{b|c}

}
.

Theorem 3.31 If a > b > c > d are numbers, then both bRLaLRdRLc
and bRLaEdRLc have value

{
{a|b}

∣∣{c|d}
}
.

The proofs of these results are given respe
tively in Appendi
es B.1

and B.2, as they use the same kind of argument as the proof of Theorem 3.27.

Note also that Conje
ture 3.29 is not true when b = c. Indeed, the

game

{
{a|b}

∣∣{b|d}
}
has value b, and therefore has a unique representation

by Theorem 3.24.

In the following, we prove Theorem 3.27, but �rst we prove in Subse
-

tion 3.2.1 some useful preliminary results.
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3.2.1 Preliminary results

In the following, for a given Toppling Dominoes game G, we denote by

GL+

(respe
tively GR+

) any game obtained from G by a sequen
e of Left

moves (respe
tively of Right moves). We sometimes allow this sequen
e to

be empty, and then use the notations GL∗

and GR∗

. We also often denote

the 
anoni
al Left and Right options of a game x whose value is a number

by xL0
and xR0

respe
tively.

In [17℄, Fink et al. proved the following :

Theorem 3.32 (Fink et al. [17℄) For any Toppling Dominoes game

G,
LG > G .

A
tually, when the game is a number x, they also proved that xL+

< x.
We extend both their results for numbers to the following lemma, involving

a se
ond number y not too far from x:

Lemma 3.33 Let x, y be numbers.

• If y < x+ 1, or y < xR0
when x is not an integer, then

{
y < Lx

y < xR+

for any game xR+

• If x− 1 < y, or xL0 < y when x is not an integer, then

{
xR < y

xL+

< y for any game xL+

Proof. We give the proof for y < x + 1 and for y < xR0
, the proof for

x− 1 < y and for xL0 < y being similar. We prove the result by indu
tion

on the birthday of y, and the number of dominoes in x. When x = 0, the
result is obvious.

Consider �rst the 
ase when x is an integer, and let y be a number

su
h that y < x + 1. Assume �rst x > 0. By Theorem 3.24, there is

a unique Toppling Dominoes game with value x, namely x = Lx
. We

then get Lx = Lx+1 = x + 1 > y. Moreover, there is no Right option to

x. So the result holds. Assume now x < 0, that is x = R|x|
. We have

Lx = LR|x| = {0|x + 1} whi
h is more than y sin
e both Left and Right

options are numbers and more than y. Moreover, any game xR+

is of the

form Rk = −k with x+1 ≤ −k ≤ 0 so any su
h xR+

is more than y. So the

result holds.

Consider now the 
ase when x is a number but not an integer, of 
anoni
al

form {xL0 |xR0}. Let y be a number su
h that y < xR0
. Re
all that by

Theorem 3.25, x = xL0LRxR0
. Note that xR0 − xL0 ≤ 1, and when de�ned,

(xL0)R0 > xR0
and (xR0)L0 ≤ xL0

.
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To prove Lx > y, we 
an just prove that whoever plays �rst, Left has a

winning strategy in Lx − y = LxL0LRxR0 − y. When Left starts, she 
an

move to LxL0 − y. Sin
e xL0
is born earlier than x and y < xR0 ≤ (xL0)R0

(or y < xR0 ≤ xL0 +1 if xL0
is an integer), we 
an use indu
tion and get y <

LxL0
. Thus LxL0 − y is positive and Left wins. Now 
onsider the 
ase when

Right starts; we list all his possible moves from Lx − y = LxL0LRxR0 − y.
If Right plays in −y, we get

• Lx + (−y)R0
. We have (−y)R0 = −(yL0) and yL0 < y < xR0

. Thus

applying indu
tion, we get Lx > yL0
and thus Lx + (−y)R0 > 0, so

Left wins.

Suppose now Right moves in LxL0LRxR0
. Toppling rightward, Right 
an

move to:

• L(xL0)R− y. By Theorem 3.32, L(xL0)R− y > (xL0)R− y. Moreover,

sin
e y < xR0 ≤ (xL0)R0
, we have by indu
tion (xL0)R > y. Thus

L(xL0)R − y is positive and Left wins.

• LxL0L − y whi
h is more that LxL0 − y by Theorem 3.32, whi
h is

positive as proved earlier. Thus Left wins.

• LxL0LR(xR0)R − y. Then Left 
an answer to LxL0 − y whi
h again

is positive as proved earlier, and win.

Toppling leftward, Right 
an move to:

• (xL0)RLRxR0−y. Then Left 
an answer to (xL0)R−y whi
h is positive
as proved earlier.

• xR0 − y, positive by initial assumption.

• (xR0)R − y. We have (xR0)R0 > xR0 > y, so by indu
tion (xR0)R > y
and Left wins.

We now prove by indu
tion that xR+

> y for any xR+

. A game

xR+

=
(
xL0LRxR0

)R+

may take seven di�erent forms, namely:

•
(
xL0

)R+

, larger than y by indu
tion sin
e

(
xL0
)R0

> xR0 > y.

•
(
xL0

)R+

L, whi
h is larger than

(
xL0

)R+

, thus also larger than y.

• xL0L, larger than y by indu
tion sin
e

(
xL0
)R0

> xR0 > y.

•
(
xR0

)R+

, larger than y by indu
tion sin
e

(
xR0

)R0 > xR0 > y.
• xR0

, larger than y by our initial assumption.

•
(
xL0

)R+

LR
(
xR0

)R∗

. In this 
ase, we show that Left has a win-

ning move in

(
xL0

)R+

LR
(
xR0

)R∗

− y. When playing �rst, she


an move to

(
xL0

)R+

− y that we already proved to be posi-

tive. When playing se
ond, we may only 
onsider Right's move

to

(
xL0

)R+

LR
(
xR0

)R∗

+ (−y)R0
, to whi
h she answers similarly to

(
xL0

)R+

+ (−y)R0
, also positive sin
e (−y)R0 > −y.

• xL0LR
(
xR0

)R+

= x′
. If y ≤ xL0

, then Left wins in x′ − y by playing

to xL0 − y or xL0 + (−y)R0
. Otherwise, we pro
eed by indu
tion on
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the birthday of y and the number of dominoes in x′
. If Right starts in

x′
, we 
an use indu
tion dire
tly and get that Left wins. If he starts

in −y, sin
e (−y)R0 > −y, we 
an also apply indu
tion. Now if Left


annot win when starting, we have x′ − y is P, so x′ = y. Yet, y is

a number su
h that xL0 < y < xR0
, so y is not born earlier than x.

So by Theorem 3.25, x is a subword of y and as x′
is a stri
t subword

of x, x′ 6= y. By uni
ity (Theorem 3.24), x′ 6≡+ y, whi
h yields a


ontradi
tion.

�

This gives us the following 
orollary.

Corollary 3.34 If a > b > c > d are numbers, then aR
+

> {a|b},
aR

+

>
{
a
∣∣{b|c}

}
, aR

+

>
{
{a|b}

∣∣c
}
and aR

+

>
{
{a|b}

∣∣{c|d}
}
.

Proof. By Lemma 3.33, we know that aR
+

> a+aR0

2 whi
h itself is a number

larger than a, b, c and d. The inequalities follow. �

3.2.2 Proof of Theorem 3.27

We now 
hara
terise the positions on one row having value {a|b}, for any
numbers a > b. We start by proving that aLRb is among those positions,

and we �rst prove a preliminary lemma on options of aLRb.

Lemma 3.35 Let a, b be numbers su
h that a > b. For any Right option bR

obtained from b toppling rightward, we have aLRbR > b.

Proof. To prove that aLRbR > b, we 
an just prove that Left has a winning

strategy in aLRbR − b whoever plays �rst. When Left starts, she 
an move

to a− b, and sin
e a− b > 0, rea
h a game whi
h is P or L, thus win. Now

onsider the 
ase when Right starts, and his possible moves from aLRbR−b.
If Right plays in −b, we get

• aLRbR + (−b)R. Re
all that sin
e b is taken in its 
anoni
al form, −b
has at most one Right option, namely (−b)R0

. Here Left 
an answer

to a+ (−b)R0
whi
h is positive sin
e (−b)R0 > −b > −a. Therefore it

is a winning position for Left.

Consider now Right's possible moves in aLRbR
. Toppling rightward, Right


an move to:

• aR − b. Using Lemma 3.33 with x = y = a, we get aR > a, and sin
e

a > b, aR − b > 0.
• aL− b. Again, by Lemma 3.33, aL− b > 0 and Left wins.

• aLR(bR)R − b. Then Left 
an answer to a− b, leaving a game in L or

in P sin
e a− b > 0, thus win.

Toppling leftward, Right 
an move to:
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• aRLRbR − b. Then Left 
an answer to aR − b whi
h is positive as

proved above.

• bR − b whi
h is positive by Lemma 3.33.

• (bR)R − b, again positive by Lemma 3.33.

�

We 
an now state the following 
laim.

Claim 3.36 Let a, b be numbers su
h that a > b. We have aLRb = {a|b}.

Proof. To prove that aLRb = {a|b}, we prove that the se
ond player has a

winning strategy in aLRb−{a|b}. Without loss of generality, we may assume

Right starts the game, and 
onsider his possible moves from aLRb− {a|b}.
If Right plays in −{a|b}, we get

• aLRb− a. Then Left 
an answer to a− a whi
h has value 0.

Consider now Right's possible moves in aLRb. Toppling rightward, Right


an move to:

• aR − {a|b}. Then Left 
an answer to aR − b, whi
h is positive.

• aL− {a|b}, whi
h is positive by Corollary 3.34.

• aLRbR−{a|b}. Then Left 
an answer to aLRbR−b, whi
h is positive

by Lemma 3.35.

Toppling leftward, Right 
an move to:

• aRLRb−{a|b}. Then Left 
an answer to aR−{a|b}, whi
h is positive

by Corollary 3.34.

• b− {a|b}. Then Left 
an answer to b− b whi
h has value 0.
• bR − {a|b}. Then Left 
an answer to bR − b whi
h is positive.

�

As an example, here is a representation of {2|34}:

We now prove that aEb also has value {a|b}, and we again need to prove

�rst a preliminary lemma on options of aEb.

Lemma 3.37 Let a, b be numbers su
h that a > b. For any Right option bR

obtained from b toppling rightward, we have aEbR > b.

Proof. We prove that Left has a winning strategy in aEbR − b whoever

plays �rst. When Left starts, she 
an move to a− b, rea
hing a game that is

P or L, thus win. Now 
onsider the 
ase when Right starts, and his possible

moves from aEbR − b. If Right plays in −b, we get

• aEbR+(−b)R. Re
all that sin
e b is taken in its 
anoni
al form, there

is only one Right option to −b, namely (−b)R0
. Here Left 
an answer

to a+ (−b)R0
whi
h is positive sin
e (−b)R0 > −b > −a. Therefore it

is a winning position for Left.
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Consider now Right's possible moves in aEbR
. Toppling rightward, Right


an move to:

• aR − b, whi
h is positive.

• a− b, whi
h is positive.

• aE(bR)R−b. Then Left 
an answer to a−b whi
h is positive and win.

Toppling leftward, Right 
an move to:

• aREbR − b. Then Left 
an answer to aR − b, whi
h is positive.

• bR − b whi
h is positive.

• (bR)R − b, again positive.

�

We 
an now state the following 
laim.

Claim 3.38 Let a, b be numbers su
h that a > b. We have aEb = {a|b}.

Proof. To prove that aEb = {a|b}, we prove that the se
ond player has a

winning strategy in aEb−{a|b}. Without loss of generality, we may assume

Right starts the game, and 
onsider his possible moves from aEb−{a|b}. If
Right plays in −{a|b}, we get

• aEb− a. Then Left 
an answer to a− a = 0.

Consider now Right's possible moves in aEb. Toppling leftward, Right 
an

move to:

• aREb− {a|b}. Then Left 
an answer to aR − {a|b}, whi
h is positive

by Corollary 3.34.

• b− {a|b}. Then Left 
an answer to b− b, whi
h has value 0.
• bR − {a|b}. Then Left 
an answer to bR − b, whi
h is positive.

Toppling rightward, Right 
an move to:

• aR − {a|b}. Then Left 
an answer to aR − b, whi
h is positive.

• a− {a|b}. Then Left 
an answer to a− b, having value at least 0.
• aEbR − {a|b}. Then if a > b Left 
an answer to aEbR − b, whi
h is

positive by Lemma 3.37. Otherwise, a = b and Left 
an answer to

bR − {a|b}, whi
h is positive by Corollary 3.34.

�

As an example, here is a representation of {1
2 | −

5
4}:

We now start proving these two rows of dominoes (and their reversals) are

the only rows having the value {a|b}. The next four lemmas are preliminary

lemmas, proving some options may not o

ur for a player in a game having

value {a|b}.
First we prove that some of Left's moves from aLRb 
annot be available

for Right in a game having value {a|b}.
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Lemma 3.39 Let a, b be numbers su
h that a > b. For any Left option bL

obtained from b toppling rightward, we have aLRbL < {a|b}.

Proof. We prove that Right has a winning strategy in aLRbL − {a|b}
whoever plays �rst. When Right starts, he 
an move to bL −{a|b}, whi
h is

negative by Corollary 3.34. Now 
onsider the 
ase when Left starts and her

possible moves to aLRbL − {a|b}. If Left plays in −{a|b}, we get

• aLRbL − b. Then Right 
an answer to bL − b, whi
h is negative.

Consider now Left's possible moves in aLRbL
. Toppling rightward, Left 
an

move to:

• aL − {a|b}. Then Right 
an answer to aL − a, whi
h is negative.

• a− {a|b}. Then Right 
an answer to a− a whi
h has value 0.
• aLR(bL)L − {a|b}. Then Right 
an answer to aLR(bL)L − a, whi
h

is negative by Lemma 3.35 sin
e both moves in b were by toppling

rightward, allowing us to 
onsider aLR(bL)L as some aLRbL
.

Toppling leftward, Left 
an move to:

• aLLRbL−{a|b}. Then Right 
an answer to bL−{a|b} whi
h is negative
by Corollary 3.34.

• RbL − {a|b} whi
h is negative as RbL < bL
by Lemma 3.33 and

bL − {a|b} is negative by Corollary 3.34.

• (bL)L − {a|b} whi
h is negative by Corollary 3.34.

�

Now we prove that some of Right's moves from aLRb 
annot be available

for Left in a game having value {a|b}. Note that these moves are not the

reversal of moves 
onsidered in the previous lemma.

Lemma 3.40 Let a, b be numbers su
h that a > b. For any Right option bR

obtained from b toppling rightward, we have aLRbR > {a|b}.

Proof. We prove that Left has a winning strategy in aLRbR−{a|b} whoever
plays �rst. When Left starts, she 
an move to aLRbR − b, whi
h is positive

by Lemma 3.35. Now 
onsider the 
ase where Right starts, and his possible

moves from aLRbR − {a|b}. If Right plays in {a|b}, we get

• aLRbR − a. Then Left 
an answer to a− a whi
h has value 0.

Consider now Right's possible moves in aLRbR
. Toppling rightward, Right


an move to:

• aR − {a|b}. Then Left 
an answer to aR − b, whi
h is positive.

• aL− {a|b}, whi
h is positive by Corollary 3.34.

• aLR(bR)R − {a|b}. Then Left 
an answer to aLR(bR)R − b, whi
h
is positive by Lemma 3.35 sin
e both moves in b were by toppling

rightward, allowing us to 
onsider aLR(bR)R as some aLRbR
.

Toppling leftward, Right 
an move to:
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• aRLRbR−{a|b}. Then Left 
an answer to aR−{a|b}, whi
h is positive

by Corollary 3.34.

• bR − {a|b}. Then Left 
an answer to bR − b, whi
h is positive.

• (bR)R − {a|b}. Then Left 
an answer to (bR)R − b, whi
h is positive.

�

Similarly, we prove that some of Left's moves from aEb 
annot be avail-

able for Right in a game having value {a|b}.

Lemma 3.41 Let a, b be numbers su
h that a > b. For any Left option bL

obtained from b toppling rightward, we have aEbL < {a|b}.

Proof. We prove that Right has a winning strategy in aEbL−{a|b} whoever
plays �rst. When Right starts, he 
an move to bL−{a|b}, whi
h is negative

by Corollary 3.34. Now 
onsider the 
ase when Left starts, and her possible

moves from aEbL − {a|b}. If Left plays in −{a|b}, we get

• aEbL − b. Then Right 
an answer to bL − b, whi
h is negative.

Consider now Right's possible moves in aEbL
. Toppling rightward, Left 
an

move to:

• aL − {a|b}. Then Right 
an answer to aL − a, whi
h is negative.

• a− {a|b}. Then Right 
an answer to a− a whi
h has value 0.
• aE(bL)L − {a|b}. Then Right 
an answer to aE(bL)L − b, whi
h is

negative by Corollary 3.34 sin
e both moves in b were by toppling

rightward, allowing us to 
onsider aE(bL)L as some aEbL
.

Toppling leftward, Left 
an move to:

• aLEbL−{a|b}. Then Right 
an answer to bL−{a|b}, whi
h is negative

by Corollary 3.34.

• bL − {a|b}, negative by Corollary 3.34.

• (bL)L − {a|b}, negative by Corollary 3.34.

�

Finally we prove that some of Right's moves from aEb 
annot be available

for Left in a game having value {a|b}. Note that again these moves are not

the reversal of moves 
onsidered in the previous lemma.

Lemma 3.42 Let a, b be numbers su
h that a > b. For any Right option bR

obtained from b toppling rightward, we have aEbR > {a|b}.

Proof. We prove that Left has a winning strategy in aEbR−{a|b} whoever

plays �rst. When Left starts, she 
an move to aEbR−b, whi
h is positive by

Lemma 3.37 if a > b and to bR − {a|b}, whi
h is positive by Corollary 3.34

if a = b. Now 
onsider the 
ase when Right starts, and his possible moves

from aEbR − {a|b}. If Right plays in −{a|b}, we get

• aEbR − a. Then Left 
an answer to a− a whi
h has value 0.
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Consider now Right's possible moves in aEbR
. Toppling rightward, Right


an move to:

• aR − {a|b}. Then Left 
an answer to aR − b, whi
h is positive.

• a− {a|b}. Then Left 
an answer to a− a whi
h has value 0.
• aE(bR)R−{a|b}. Then Left 
an answer to aE(bR)R−b, whi
h is posi-

tive by Lemma 3.37 sin
e both moves in b were by toppling rightward,

allowing us to 
onsider aE(bR)R as some aEbR
.

Toppling leftward, Right 
an move to:

• aREbR−{a|b}. Then Left 
an answer to aR−{a|b}, whi
h is positive

by Corollary 3.34.

• bR − {a|b}. Then Left 
an answer to bR − b, whi
h is positive.

• (bR)R − {a|b}. Then Left 
an answer to (bR)R − b, whi
h is positive.

�

Though we want to deal with a game having value {a|b}, it might not

be in 
anoni
al form, that is its options and other proper followers might

not be numbers. As most known results in Toppling Dominoes are about

numbers, we get ba
k there with the following lemma.

Lemma 3.43 Let a be a number and x be a game su
h that x > a. Then

there exists a number b > a su
h that b ∈ xL
∗

.

Proof. We prove it by indu
tion on the birthdays of x and a.
If x = a, then a ∈ xL

∗

and a > a. Otherwise, x > a, so aR0 6 x or

a 6 xL for some xL. In both 
ases, we 
on
lude by indu
tion hypothesis,

sin
e aR0 > a and (xL)L
∗

⊆ xL
∗

. �

To fully 
hara
terise Toppling Dominoes rows having value {a|b}, we
need another lemma from [17℄:

Lemma 3.44 (Fink et al. [17℄) [Sandwi
h Lemma℄ Let G be a Top-

pling Dominoes position with value α. From G − α, if the �rst player

topples dominoes toward the left (right) then the winning response is not to

topple a domino toward the left (right).

We now assume some Toppling Dominoes position x has value {a|b}
to for
e some properties on su
h positions.

Lemma 3.45 If a > b are numbers and x is a Toppling dominoes posi-

tion with value {a|b}, then

• a ∈ xL ∪ xL
2

,

• for any number a0 > a, a0 /∈ xL
∗

,

• b ∈ xR ∪ xR
2

,

• for any number b0 < b, b0 /∈ xR
∗

.
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Proof. As x = {a|b}, x − {a|b} is a se
ond-player win. From x − {a|b},
Right 
an move to x − a, from whi
h Left should have a winning move. It


annot be to x+ (−a)L0 = {a|b} − aR0
as it is not winning sin
e aR0


an be

written {r1|r2} with r1 > a and r2 > b. Hen
e there is a Left move x0 of x
su
h that x0 > a. By Lemma 3.43, there exists a number a0 > a su
h that

a0 ∈ xL
∗

0 ⊂ xL
+

. If a0 ∈ xL
, then a0 = a as otherwise Left's move from

x− {a|b} to a0 − {a|b} would be winning. As xL
>3

⊂ xL
2

, we do not need


onsider that 
ase. Thus we 
an assume a0 ∈ xL
2

\xL
. We 
an then write

x = w1δ1a0δ2w2 with δ1, δ2 ∈ {L,E}. In the following, we use the fa
t that

Left has no winning �rst move in x−{a|b}. From x−{a|b}, Left 
an topple

δ2 rightward to w1δ1a0. If Right answers to w1δ1a0 − a, Left 
an topple

δ1 leftward to a0 − a and win. Hen
e Right's winning answer has to be to

some (w1δ1a0)
R − {a|b} and 
an only be a
hieved by toppling leftward by

Lemma 3.44. If he moves to a0 or some aR0 , Left's move to a0 − b or aR0 − b
is a winning move sin
e aR0 > a0 > a > b. Hen
e his winning move is to

some wR
1 δ1a0 − {a|b}. But then Left 
an answer to a0 − {a|b} and we have

a0 = a or Right would have no winning strategy. This implies both that

a ∈ xL ∪ xL
2

, and that for any number a0 > a, a0 /∈ xL
∗

.

A similar reasoning would prove the last two stated items. �

Lemma 3.46 If a > b are numbers and x is a Toppling dominoes po-

sition with value {a|b}, then x has a Left option to a or a Right option to

b.

Proof. By Lemma 3.45, we know that a ∈ xL ∪ xL
2

and b ∈ xR ∪ xR
2

.

Assume that a only appears in xL
2

\xL
and b only appears in xR

2

\xR
.

We 
an write x = w1δ1aδ2w2 su
h that b /∈ wR
+

1 and δ1, δ2 ∈ {L,E}, or

x = w1δ1bδ2w2 su
h that a /∈ wL
+

1 and δ1, δ2 ∈ {R,E}. Consider the one

with w1 having the smallest length. Without loss of generality, we 
an

assume it is w1δ1aδ2w2, and 
onsider Left's move from x − {a|b} to

w1δ1a− {a|b}. We saw in the proof of Lemma 3.45 that Right's win-

ning answer 
an only be to some wR
1 δ1a− {a|b}. Now Left 
an move to

wR
1 δ1a− b. If Right answers to wR

1 δ1a− bL0
, Left 
an move to a− bL0

and

win. Hen
e Right's winning answer has to be to some (wR
1 δ1a)

R − b. For

this move to be winning, we have (wR
1 δ1a)

R 6 b, so by Lemma 3.43 we have

b0 ∈ ((wR
1 δ1a)

R)R
∗

for some number b0 6 b. If b0 < b, by Lemma 3.45 we

have b0 /∈ xR
∗

, so b0 has to be obtained from wR
1 δ1a by only toppling left-

ward. We have b0 < b 6 a, hen
e b0 
annot be some aR > a, nor some

(wR
1 )

Rδ1a sin
e it would mean that a ∈ bL
0 and then a < b0. Hen
e b0 = b.

Again, b has to be obtained from wR
1 δ1a by only toppling leftward sin
e

b /∈ aR
+

as b 6 a, and no b starts in x before w1 ends. In parti
ular,

(wR
1 δ1a)

R
is of the form wR

1 δ1a, a or aR. (wR
1 δ1a)

R

annot be of the form

aR, sin
e aR > a > b. If (wR
1 δ1a)

R
is of the form wR

1 δ1a, Left 
an move from

wR
1 δ1a− b to a− b and win. Hen
e (wR

1 δ1a)
R = a, sin
e (wR

1 δ1a)
R 6 b 6 a,
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we have a = b and δ1 = E. w1 
annot be greater than or equal to a sin
e

otherwise we would �nd a number a0 > a su
h that a0 ∈ wL
∗

1 . Similarly,

w1 
annot be less than or equal to b = a. As aL < a < aR, there exists a

Left move wL
1 of w1 that is greater than or equal to a and so we 
an �nd

a number a0 > a su
h that a0 ∈ (wL
1 )

L
∗

, whi
h again is not possible. This

means there was no winning move for Right from wR
1 δ1a− b, whi
h means

there was no winning move for Right from w1δ1a− {a|b}, whi
h 
ontradi
ts

the fa
t that x = {a|b}. Hen
e we have that a ∈ xL
or b ∈ xR

. �

We 
an now prove the following 
laim.

Claim 3.47 If a > b are numbers and x is a Toppling dominoes position

with value {a|b}, then x is either aLRb or aEb (or the reversal of one of

them).

Proof. By Lemma 3.46, we 
an assume without loss of generality that

x = aLx′
or x = aEx′

for some x′
.

First assume x = aLx′
. If x is a stri
t subword of aLRb, then x is an option

of aLRb, so they 
annot be equal. For the same reason, aLRb 
annot be

a stri
t subword of x. Looking from left to right, we �nd the �rst domino

where x di�ers from aLRb. If it is a white or grey domino instead of a

bla
k one, then Right has a move from x−{a|b} to aLRbL −{a|b} whi
h is

winning by Lemma 3.39. If it is a bla
k or grey domino instead of a white

one, then Left has a move from x−{a|b} to aL−{a|b} or to aLRbR−{a|b}
whi
h are winning by Corollary 3.34 and Lemma 3.40. So x 
annot di�er

from aLRb.
Now assume x = aEx′

. If x is a stri
t subword of aEb, then x is an option of

aEb, so they 
annot be equal. For the same reason, aEb 
annot be a stri
t

subword of x. Looking from left to right, we �nd the �rst domino where

x di�ers from aEb. If it is a white or grey domino instead of a bla
k one,

then Right has a move from x− {a|b} to aEbL − {a|b} whi
h is winning by

Lemma 3.41. If it is a bla
k or grey domino instead of a white one, then Left

has a move from x−{a|b} to aEbR−{a|b} whi
h is winning by Lemma 3.42.

So x 
annot di�er from aEb.

�

3.3 Col

Col is a partizan game played on an undire
ted graph with verti
es either

un
oloured or 
oloured bla
k or white. A move of Left 
onsists in 
hoosing

an un
oloured vertex and 
olouring it bla
k, while a move of Right would be

to do the same with the 
olour white. An extra 
ondition is that the partial


olouring has to stay proper, that is no two adja
ent verti
es should have

the same 
olour.



Chapter 3. Partizan games 73

Un
oloured verti
es are represented grey.

When a player 
hooses a vertex, they thus be
ome unable to play on any

of its neighbours for the rest of the game. Hen
e, all these neighbours are

somehow reserved for the other player. Another way of seeing the game is

to play it on the graph of available moves: a position is an undire
ted graph

with all verti
es 
oloured bla
k, white or grey; a move of Left is to 
hoose

a bla
k or grey vertex, remove it from the game with all its bla
k 
oloured

neighbours, and 
hange the 
olour of its other neighbours to white; a move

of Right is to 
hoose a white or grey vertex, remove it from the game with all

its white 
oloured neighbours, and 
hange the 
olour of its other neighbours

to bla
k. This means that bla
k verti
es are reserved for Left, white verti
es

for Right, and either player 
an 
hoose grey verti
es. In the following, we

use that se
ond representation.

The des
ription of a position 
onsists of the graph on whi
h the two

players are playing, and a reservation fun
tion from the set of verti
es to the

set of 
olours {black,white, grey}.

Example 3.48 Figure 3.11 shows an example of a Col position under the

two representations. On top is the �rst representation as in the original

de�nition of the game. On bottom is the se
ond representation, that we use

in the following. Both represent the same game. To go from the original

representation to the se
ond representation, we delete bla
k verti
es and


olour their neighbours white, delete verti
es that were originally white and


olour their neighbours bla
k, and delete verti
es we gave both 
olours. We


an see the se
ond representation seems simpler, and that is why we use it.

Example 3.49 Figure 3.12 gives an example of a Right move. Right 
hooses

the grey vertex x. That vertex is removed from the game. The white vertex

y also disappears. The grey vertex z be
omes bla
k. The bla
k vertex t

stays bla
k. The rest of the graph does not 
hange as no other verti
es are

neighbours of x.

We represent some graphs using words: ea
h letter used in this repre-

sentation 
orresponds to a subgraph with a spe
i�
 vertex being in
ident

with the edges 
onne
ting that subgraph to the subgraphs 
orresponding to

the letters before and after this one. The spe
i�
 verti
es 
orresponding to

the �rst letter and the last letter are not neighbours, unless the words has

length 2. An o represents a grey vertex, a B a bla
k vertex and a W a white

vertex, the only vertex being the spe
i�
 vertex. An x represents a path

with two grey verti
es, anyone of them being the spe
i�
 vertex. All the

graphs that 
an be represented by words using these letters are 
aterpillars

with maximum degree 3. We also note Cn the 
y
le on n grey verti
es.

Example 3.50 Figure 3.13 shows a word and the unique graph that it en-


odes. You 
an see that for ea
h x, there is a vertex whose degree remains

1.
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Figure 3.11: A Col position in its two representations
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y

x

z t

Figure 3.12: Playing a move in Col

xWooxxxoWoBxoWxooxWBoxBoxxo

Figure 3.13: Representation of a 
aterpillar by a word

We now introdu
e a few notation that we use in the following. We note

ℓG(v) the label of a vertex v ∈ V (G), that is B if the vertex is 
oloured

bla
k, W if it is 
oloured white and o if it is un
oloured. Modifying the label

of a vertex is equivalent to modifying its 
olour. We say ℓG(u) = −ℓG(v)
if both ℓG(u) and ℓG(v) are o or if one is B and the other is W . Given a

Col position G, we note −G the Col position su
h that V (−G) = V (G),
E(−G) = E(G) and ∀v ∈ G, ℓ−G(v) = −ℓG(v). The reader would have

re
ognised that the game −G is the 
onjugate of the game G. Given two

Col positions G1, G2 and two verti
es u1 ∈ V (G1), u2 ∈ V (G2) su
h that

ℓG1
(u1) = ℓG2

(u2), we note (G1, u1)⊙ (G2, u2) the Col position de�ned by:

V ((G1, u1)⊙ (G2, u2)) = V (G1) ∪ V (G2) \ {u2}
E((G1, u1)⊙ (G2, u2)) = E(G1) ∪ E(G2[V (G2) \ {u2}])

∪{(u1, v) | (u2, v) ∈ E(G2)})

ℓ(G1,u1)⊙(G2,u2)(v) =

{
ℓG1

(v) if v ∈ V (G1)
ℓG2

(v) otherwise

Given a vertex u in a Col position G, we note by G+
u (resp. G−

u ) the Col

position obtained from G by re-labelling B (resp. W ) the vertex u.
We note PB

n (resp PBB
n , PBW

n , PWB
n , PWW

n ) the Col position (Bon, u) (resp
(BonB,u), (BonW,u), (WonB,u), (WonW,u)) where the spe
i�
 vertex u
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is su
h that ℓPB
n
(u) = B (resp ℓPBB

n
(u) = B, ℓPBW

n
(u) = B, ℓPWB

n
(u) = W ,

ℓPWW
n

(u) = W ).

In this se
tion, we re
all some results stated in [4℄ and [10℄ and give their

proofs, �nd the normal out
ome of most 
aterpillars with no reserved vertex

and the normal out
ome of any 
ograph with no reserved vertex. We present

some results that are already stated in [4℄ and [10℄ be
ause most of them are

stated without proof, and though we trust the authors of these books, we

think it is interesting to have the proof written somewhere.

3.3.1 General results

First, we look at general graphs and give some tools that help the analysis.

The �rst theorem gives a winning strategy in spe
i�
 situations: when

a position is symmetri
, with no vertex being its own image, the se
ond

player wins by always playing on the image of the vertex their opponent just

played. This is 
lose to the `Tweedledum-Tweedledee' strategy, ex
ept that

the position is not ne
essarily of the form G+ (−G).

Theorem 3.51 (Berlekamp et al. [4℄, Conway [10℄) Let G be a Col

position su
h that there exists a �x-point-free involution f of V (G) su
h

that:

1. ∀u, v ∈ V (G), (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(G)

2. ∀v ∈ V (G), lG(v) = −lG(f(v))

Then G ≡+ 0.

Proof. We show it by indu
tion on |V (G)|.
If |V (G)| = 0, G = ∅ = {· | ·} = 0.
Assume now |V (G)| > 2. Let GL

be the graph after a move of

Left on any vertex u from G. Let G′
be the graph after a move of

Right on the vertex f(u) from GL
whi
h is possible sin
e u 6= f(u)

and lG(u) = −lG(f(u)). f|G′
is a �x-point-free involution of V (G′)

su
h that ∀v,w ∈ V (G′), (v,w) ∈ E(G′) ⇔ (f|G′(v), f|G′(w)) ∈ E(G′) and

∀v ∈ V (G′), lG′(v) = lG′(f|V (G′)(v)), so G′ ≡+ 0 by indu
tion and is a se
-

ond player win. Hen
e Right has a winning strategy playing se
ond.

A similar reasoning would show Left has a winning strategy playing se
ond.

Hen
e G ≡+ 0. �

Example 3.52 Figure 3.14 shows an example of a Col position satisfying

the 
onditions of Theorem 3.51. The image of ea
h vertex is the re�e
tive

vertex through the dashed line.

The next theorem allows us to 
ompare a position to the same position

in whi
h we would have removed some edges, all of them in
ident to a bla
k

vertex. This 
omparison seems natural as it seems to be an advantage when

a vertex reserved for you has a low degree.



Chapter 3. Partizan games 77

Figure 3.14: A symmetri
 Col P-position

Theorem 3.53 (Berlekamp et al. [4℄, Conway [10℄) Let G and G′
be

two Col positions su
h that:

1. V (G) = V (G′),

2. ∀u ∈ V (G), lG(u) = lG′(u),

3. E(G′) ⊆ E(G),

4. ∀(u, v) ∈ E(G) \E(G′), (lG(u) = B or lG(v) = B).

Then G 6+ G′
.

Proof. We show by indu
tion on |V (G)| that G′ + (−G) >+ 0, that is Left
wins if Right starts.

If |V (G)| = 0, G′ + (−G) = ∅+ ∅ = 0 + 0 = 0.
Assume now |V (G)| > 2. Let f be the fun
tion whi
h assigns a vertex of

V (G′) to its 
opy in V (−G) and vi
e versa. Let GR
be the graph after a

move of Right on any vertex u from G′ + (−G). Let G0 be the graph af-

ter a move of Left on the vertex f(u) from GR
. Let G1 be the subgraph

of G0 having its verti
es 
orresponding to those of −G and G2 the sub-

graph of G0 having its verti
es 
orresponding to those of G′
. We have

V (−G1) = V (G2), ∀u ∈ V (−G1), l−G1
(u) = lG2

(u), E(G2) ⊆ E(−G1) and

∀(u, v) ∈ E(G1) \ E(G2), (l−G1
(u) = B or l−G1

(v) = B), so G2 +G1 >
+ 0

by indu
tion. So G0 >+ 0 and Left wins G0 if Right starts, so she wins

GR
if she starts. So G′ + (−G) >+ 0. Hen
e G 6+ G′

. �

As we get a similar result if the removed edges are all in
ident to a white

vertex, we get the following 
orollary.

Corollary 3.54 (Berlekamp et al. [4℄, Conway [10℄) Let G and G′
be

two Col positions su
h that:
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1. V (G) = V (G′)

2. ∀u ∈ V (G), lG(u) = lG′(u)

3. E(G′) ⊆ E(G)

4. ∀(u, v) ∈ E(G) \ E(G′), ((lG(u) = B and lG(v) = W )) or vi
e versa

Then G ≡+ G′
.

Proof. We have G 6+ G′
and −G 6+ −G′

, so G ≡+ G′
. �

A
tually, we even have G = G′
in this 
ase.

Adding a bla
k vertex or reserving a vertex for Left seems to be an

advantage for her. The next theorem shows that this intuition is 
orre
t.

Theorem 3.55 (Berlekamp et al. [4℄, Conway [10℄) Let G be a Col

position and u a grey vertex of G. Then:

1. G+
u >+ G >+ G−

u

2. G+
u >+ G \ {u} >+ G−

u

Proof. We show by indu
tion on |V (G)| that G+
u + (−G \ {u}) >+ 0, that

is Left wins if Right starts.

If |V (G)| = 0, G+
u + (−G \ {u}) = ∅+ ∅ = 0.

Assume now |V (G)| > 2. We de�ne f the fun
tion whi
h assigns a vertex

of V (G+
u ) \ {u} to its 
opy in V (−G \ {u}) and vi
e versa. Let GR

be the

graph after a move of Right on any vertex v from G+
u + (−G \ {u}). Let G0

be the graph after a move of Left on the vertex f(v) from GR
. Let G1 be

the subgraph of G0 having its verti
es 
orresponding to those of G+
u and G2

the subgraph of G0 having its verti
es 
orresponding to those of −G \ {u}.
If (u, f(v)) ∈ E(G+

u + (−G \ {u})), then G1 = −G2, so G0 = G1 +G2 = 0.
Otherwise, G1 = G+

1u and G2 = −G1 \ {u}, so G0 = G1 + G2 >+ 0 by

indu
tion. Hen
e 0 6+ G0 and Left wins G0 if Right starts, so she wins GR

if she starts. So G+
u + (−G \ {u}) >+ 0. Hen
e G+

u >+ G \ {u}.
We show by indu
tion on |V (G)| that G+

u +(−G) >+ 0, that is Left wins
it if Right starts.

If |V (G)| = 0, G+
u + (−G) = ∅+ ∅ = 0.

Assume |V (G)| > 2. We de�ne f the fun
tion whi
h assigns a vertex of

V (G+
u ) to its 
opy in V (−G) and vi
e versa. Let GR

be the graph after

a move of Right on any vertex v from G+
u + (−G). Let G0 be the graph

after a move of Left on the vertex f(v) from GR
. Let G1 be the subgraph

of G0 having its verti
es 
orresponding to those of G+
u and G2 the subgraph

of G0 having its verti
es 
orresponding to those of −G. If u = f(v) or

(u, v) ∈ E(G+
u + (−G \ {u})), then G1 = −G2, so G0 = G1 + G2 = 0. If

(u, f(v)) ∈ E(G+
u + (−G \ {u})), then G2 = G+

2u and G1 = G2 \ {u}, so
G0 = G1 + G2 >+ 0. Otherwise, G1 = (−G2)

+
u , so G0 = G1 +G2 >+ 0 by
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indu
tion. Hen
e 0 6+ G0 and Left wins G0 if Right starts, so she wins GR

if she starts. So G+
u + (−G) >+ 0. Hen
e G+

u >+ G.
Finally, −(G−

u ) = (−G)+u , so −(G−
u ) >

+ −G and −(G−
u ) >

+ −G \ {u}.
Hen
e G >+ G−

u and G \ {u} >+ G−
u . �

The next theorem says that any Col position is equivalent under normal

play to a number or to the game ∗ added to a number, whi
h makes �nding

the out
ome of a sum easier. In parti
ular, it implies that the sum of two

Col N -positions is a P-position. Also, if we �nd a move to z for both

players, we know the value of the game is z + ∗ without having the need

to 
he
k other options. It also implies that if G is a Col position where

G = −G, whi
h is the 
ase when all verti
es are grey, then G = 0 or G = ∗.
See [4℄, vol.1, p.47-48 for the proof.

Theorem 3.56 (Berlekamp et al. [4℄, Conway [10℄) For any Col po-

sition G, there exists a number z su
h that G = z or G = z + ∗.

In a Col position, if there is a vertex for whi
h the position has the

same value when the 
olour of the vertex is swit
hed to bla
k and when the


olour of the vertex is swit
hed to white, it seems no player wants to play

on that vertex, whether it is reserved or not. The intuition is 
orre
t, and

the following theorem shows a result even stronger: even if you identify that

vertex to any vertex of another position, keeping the �rst position as it was,

with no other vertex adja
ent to a vertex of the added position, no player

wants to play on that vertex, whether it is reserved or not.

Theorem 3.57 (Berlekamp et al. [4℄, Conway [10℄)

1. Let G be a Col position and u a grey vertex of G su
h that G+
u ≡+ G−

u ,

G′
any Col position and v a grey vertex of G′

. Then

(G+
u , u)⊙ (G′+

v , v) ≡+ (G,u) ⊙ (G′, v) ≡+ (G \ {u}) + (G′ \ {v}) ≡+ (G−
u , u)⊙ (G′−

v , v).

2. Let G be a Col position and u a vertex of G su
h that G+
u ≡+ G \ {u},

G′
any Col position and v a vertex of G′

sharing the 
olour of u. Then
(G+

u , u)⊙ (G′+
v , v) ≡+ (G \ {u}) + (G′ \ {v}).

Proof. 1. We have G+
u ≡+ G−

u , so 0 ≡+ G+
u + (−G−

u ) ≡+ G+
u + (−G)+u .

Moreover,

0 ≡+ G \ {u}+ (−G \ {u}) +G′ \ {v}+ (−G′ \ {v})
≡+ G \ {u}+G′ \ {v} + (−G) \ {u}+ (−G′) \ {v}
6

+ (G+
u , u)⊙ (G′+

v , v) + ((−G)+u , u)⊙ ((−G′)+v , v)
6

+ G+
u +G′ \ {v} + (−G)+u + (−G′) \ {v}

≡+ (G+
u + (−G)+u ) + (G′ \ {v}+ (−G′ \ {v}))

≡+ 0

Hen
e

0 ≡+ (G+
u , u)⊙ (G′+

v , v) + ((−G)+u , u)⊙ ((−G′)+v , v)
≡+ (G+

u , u)⊙ (G′+
v , v) + (−((G−

u , u)⊙ (G′−
v , v)))
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From Theorem 3.55, we get

(G+
u , u)⊙ (G′+

v , v) ≡+ (G,u) ⊙ (G′, v)
≡+ (G \ {u}) + (G′ \ {v}
≡+ (G−

u , u)⊙ (G′−
v , v)

2. We have G+
u ≡+ G \ {u}, so 0 ≡+ G+

u + (−G \ {u}).

0 ≡+ G \ {u} +G′ \ {u}+ (−G \ {u}) + (−G′ \ {u})
6+ (G+

u , u)⊙ (G′+
v , v) + (−((G \ {u}) + (G′ \ {v})))

6+ G+
u +G′ \ {v} + (−G \ {u}) + (−G′ \ {v})

≡+ 0

Hen
e

0 ≡+ (G+
u , u)⊙ (G′+

v , v) + (−((G \ {u}) + (G′ \ {v})))
(G+

u , u)⊙ (G′+
v , v) ≡+ (G \ {u}) + (G′ \ {v})

�

We immediately get the following 
orollary, that we use frequently in the

following of the se
tion.

Corollary 3.58 (Berlekamp et al. [4℄, Conway [10℄) For any Col po-

sition G, and any vertex v of G su
h that ℓG(v) = B, we have

(G, v) ⊙ PBB
0 ≡+ (G \ {v}) +B.

Proof. We have B = {∅ | ·} = BB. �

3.3.2 Known results

We now fo
us on some 
lasses of trees. Though we want to �nd the out
omes

of Col positions where all verti
es are grey, we need intermediate lemmas

where some verti
es are bla
k or white.

We �rst prove that 
y
les and paths having only grey verti
es all have

value 0, apart from the isolated vertex whi
h has value ∗. We separate the

proof with two lemmas, 
overing all possible maximal 
onne
ted subpositions

that may appear throughout su
h a game, as the disjun
tive sum of numbers

and ∗ is easy to determine, before Theorem 3.61 ends the proof.

The �rst lemma gives the values of all paths where ea
h leaf is either

bla
k or white, and all internal nodes are grey.

Lemma 3.59 (Berlekamp et al. [4℄, Conway [10℄)

1. ∀n > 0, B ≡+ BonB ≡+ 1.
2. ∀n > 0, BonW ≡+ 0.
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Proof. We show the results simultaneously by indu
tion on n.
B = {∅ | ·} = {0 | ·} ≡+ 1. BB = {∅ | ·} = {0 | ·} ≡+ 1.
BW = B +W ≡+ 0.
Let n > 1 be an integer.

BonB = {Won−1B,Won−2B,

n−3

2⋃

i=0

(BoiW +Won−i−3B)

| (B +Bon−2B),

n−3⋃

i=0

(BoiB +Bon−i−3B)}

≡+ {0, 0, (0 + 0) | 2, (1 + 1)} by induction
≡+ 1.

BonW = {Won−1W,Won−2W, (Bon−2W +W ),

n−3⋃

i=0

(BoiW +Won−i−3W )

| Bon−1B,Bon−2B, (B +Bon−2W ),
n−3⋃

i=0

(BoiB +Bon−i−3W )}

≡+ {−1,−1, (0 + (−1)), (0 + (−1)) | 1, 1, (1 + 0), (1 + 0)}
by induction

≡+ 0.

�

The following lemma gives the values of all paths where exa
tly one leaf

is either bla
k or white, and all other verti
es, in
luding the other leaf, are

grey.

Lemma 3.60 (Berlekamp et al. [4℄, Conway [10℄) ∀n > 1, Bon ≡+ 1
2 .

Proof. We show the result by indu
tion on n.
Bo = {W, ∅ | B} = {−1, 0 | 1} ≡+ 1

2 .

Boo = {Wo,W,BW | (B +B), BB} ≡+ {−1
2 ,−1, 0 | (1 + 1), 1} ≡+ 1

2 .

Let n > 3 be an integer.

Bon = {Won−1,Won−2,

n−4⋃

i=1

(BoiW +Won−i−3, (Bon−3W +W ), Bon−2W

| (B +Bon−2),
n−4⋃

i=0

(BoiB +Bon−i−3), (Bon−3B +B), Bon−2B}

≡+ {−
1

2
,−

1

2
, (0−

1

2
), (0 + (−1)), 0 | (1 +

1

2
), (1 +

1

2
), (1 + 1), 1}

by induction

≡+ 1

2
.

�



82 3.3. Col

We are now able to state the result giving the value of any grey path and

any 
y
le, as mentioned above.

Theorem 3.61 (Berlekamp et al. [4℄, Conway [10℄)

1. ∀n > 2, on ≡+ 0, and o = ∗.
2. ∀n > 3, Cn ≡+ 0.

Proof. o = {∅ | ∅} = {0 | 0} = ∗. oo = {W | B} = {−1 | 1} ≡+ 0.
ooo = {Wo, (W +W ) | Bo, (B +B)} ≡+ {−1

2 ,−2 | 1
2 , 2} ≡+ 0.

oooo = {Woo, (W +Wo) | Boo, (B +Bo)} ≡+ {−1
2 ,−

3
2 | 1

2 ,
3
2} ≡+ 0.

Let n > 5 be an integer.

on = {Won−2, (W +Won−3),

n−3

2⋃

i=1

(oiW +Won−i−3)

| Bon−2, (B +Bon−3)

n−3

2⋃

i=

(oiB +Bon−i−3)}

≡+ {−
1

2
,−

3

2
,−1 |

1

2
,
3

2
, 1}

≡+ {0}.

Cn = {Won−3W | Bon−3B} ≡+ {−1 | 1} ≡+ 0. �

The next theorem gives a useful tool on how to shorten long paths leading

to a degree 1 vertex in a general position, while keeping the value un
hanged.

We prove that result using the original de�nition of 
omparison and equiva-

len
e between games, as de�ned in [10℄:

G >
+ H ⇔ ((∀GR ∈ GR, GR 
 H) ∧ (∀HL ∈ HL, G 
 HL)).

Theorem 3.62 (Berlekamp et al. [4℄, Conway [10℄)

1. ∀G, u ∈ V (G) su
h that ℓG(u) = B, n > 1,
(G,u) ⊙ PB

n+2 ≡
+ (G,u) ⊙ PBB

n − 1
2 ≡+ (G,u) ⊙ PBW

n + 1
2 .

2. ∀G, u ∈ V (G) su
h that ℓG(u) = B, n > 1,
(G,u) ⊙ PBB

n ≡+ (G,u)⊙ PBB
1 .

3. ∀G, u ∈ V (G) su
h that ℓG(u) = B, n > 1,
(G,u) ⊙ PBW

n ≡+ (G,u) ⊙ PBW
1 .

4. ∀G, u ∈ V (G) su
h that ℓG(u) = B, n > 3, (G,u) ⊙ PB
n ≡+ (G,u) ⊙ PB

3 .

Proof. For most of the proof, we list the set of options of both games.

Options on the same line are equal, as explained on the third 
olumn of that

line. Having Left options of two games equal is enough to 
on
lude none of

these options is greater than or equal to any of these two games (that follows

from G >+ G for any game G).
We show 1. by indu
tion on the birthday of G.

If G = ∅, then it follows immediately from Lemma 3.59 and 3.60. Assume
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G is a non-empty position. Let GL
3 be the position after a move of Left on

u from G, GL
2 the position after a move of Left on a neighbour of u from G,

GL
1 the position after a move of Left on any other vertex from G, and GR

the position after a move of Right on any vertex from G.
We get

Left options of

(G,u) ⊙ PBB
n

Left options of

(G,u) ⊙ PBW
n + 1

(GL
1 , u)⊙ PBB

n (GL
1 , u)⊙ PBW

n + 1 by indu
tion

GL
2 + onB GL

2 + onW + 1 by Lemma 3.60

GL
3 +Won − 1B GL

3 +Won − 1W + 1 by Lemma 3.59

(G \ {u}) +Won−2B (G\{u})+Won−2W+1 by Lemma 3.59

((G,u) ⊙ PBW
i ) +

Won−i−3B
((G,u) ⊙ PBW

i ) +
Won−i−3W + 1

∀i ∈ J0;n − 3K by

Lemma 3.59

(G,u) ⊙ PBW
n−2 (G,u)⊙PBW

n−2 +W +1

(G,u) ⊙ PBW
n−1

(G,u) ⊙ PBW
n

We 
an see almost all of them are one-to-one equal. We assure no Left

option of (G,u)⊙PBB
n is greater than or equal to (G,u)⊙PBW

n +1 and no

Left option of (G,u)⊙PBW
n +1 is greater than or equal to (G,u)⊙PBB

n for

the others as follows:

(G,u) ⊙ PBW
n−1 6+ ((G \ {u}) +Bon−1W )

≡+ ((G \ {u}) +Won−1W + 1)

�+ (G,u) ⊙ PBW
n + 1

(G,u) ⊙ PBW
n 6

+ ((G \ {u}) +BonW )

≡+ ((G \ {u}) +Won−1B)

�+ (G,u) ⊙ PBB
n

We also get

Right options of

(G,u) ⊙ PBB
n

Right options of

(G,u) ⊙ PBW
n + 1

(GR, u)⊙ PBB
n (GR, u)⊙ PBW

n + 1 by indu
tion

G+Bon−2B G+Bon−2W + 1 by Lemma 3.59

((G,u) ⊙ PBB
i ) +

Bon−i−3B
((G,u) ⊙ PBB

i ) +
Bon−i−3W + 1

∀i ∈ J0;n − 3K by

Lemma 3.59

((G,u) ⊙ PBB
n−2) +B ((G,u) ⊙ PBB

n−2) + 1

((G,u) ⊙ PBB
n−1) + 1

We 
an see almost all of them are one-to-one equal. We assure no Right

option of (G,u) ⊙ PBB
n is less than or equal to (G,u) ⊙ PBW

n + 1 and no

Right option of (G,u) ⊙ PBW
n + 1 is less than or equal to (G,u) ⊙ PBB

n for
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the other as follows:

((G,u) ⊙ PBB
n−1) + 1 >+ ((G \ {u}) + on−1B + 1)

>+ ((G \ {u}) +BonB)

>+ (G,u) ⊙ PBB
n

Hen
e we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PBW

n + 1.

We get

Left options of

(G,u) ⊙ PBB
n − 1

2

Left options of

(G,u) ⊙ PB
n+2

(GL
1 , u)⊙ PBB

n − 1
2 (GL

1 , u)⊙ PB
n+2 by indu
tion

GL
2 + onB − 1

2 GL
2 + on+2

by Lemma 3.60

GL
3 +Won − 1B − 1

2 GL
3 +Won+1

by Lemma 3.60

(G\{u})+Won−2B− 1
2 (G \ {u}) +Won

by Lemma 3.59 and

3.60

((G,u) ⊙ PBW
i ) +

Won−i−3B − 1
2

((G,u) ⊙ PBW
i ) +

Won−i−1
∀i ∈ J0;n − 3K by

Lemma 3.59 and 3.60

(G,u) ⊙ PBW
n−2 − 1

2 (G,u) ⊙ PBW
n−2 +Wo by Lemma 3.60

(G,u) ⊙ PBW
n−1 +W

(G,u) ⊙ PBW
n−1 − 1

2

(G,u) ⊙ PBB
n − 1 (G,u) ⊙ PBW

n

We 
an see almost all of them are one-to-one equal. We assure no Left

option of (G,u) ⊙ PBB
n − 1

2 ) is greater than or equal to (G,u) ⊙ PB
n+2 and

no Left option of (G,u)⊙PB
n+2 is greater than or equal to (G,u)⊙PBB

n − 1
2

for the others as follows:

(G,u) ⊙ PBW
n−1 +W <+ (G,u) ⊙ PBW

n−1 −
1

2

�+ (G,u) ⊙ PBB
n −

1

2

(G,u) ⊙ PBW
n−1 −

1

2
6+ (G \ {u}) +Bon−1W −

1

2
≡+ (G \ {u}) +Won

�+ (G,u) ⊙ PB
n+2

We also get
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Right options of

(G,u) ⊙ PBB
n − 1

2

Right options of

(G,u) ⊙ PB
n+2

(GR, u)⊙ PBB
n − 1

2 (GR, u)⊙ PB
n+2 by indu
tion

G+Bon−2B − 1
2 G+Bon

by Lemma 3.59 and

3.60

((G,u) ⊙ PBB
i ) +

Bon−i−3B − 1
2

((G,u) ⊙ PBB
i ) +

Bon−i−1
∀i ∈ J0;n − 3K by

Lemma 3.59 and 3.60

((G,u)⊙PBB
n−2)+B− 1

2 ((G,u) ⊙ PBB
n−2) +Bo

by Lemma 3.59 and

3.60

((G,u) ⊙ PBB
n−1) +B

(G,u) ⊙ PBB
n + 0 (G,u) ⊙ PBB

n

We 
an see almost all of them are one-to-one equal. We assure no Right

option of (G,u) ⊙ PBB
n − 1

2 is less than or equal to (G,u) ⊙ PB
n+2 and no

Right option of (G,u) ⊙ PB
n+2 is less than or equal to (G,u) ⊙ PBB

n − 1
2 for

the other as follows:

((G,u) ⊙ PBB
n−1) +B >

+ (G \ {u}) + on−1B +B

>+ (G \ {u}) +BonB −
1

2

>
+ (G,u)⊙ PBB

n −
1

2

Hen
e we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PB

n+2.

We show 2. by indu
tion on the birthday of G and on n.
If G = ∅, then it follows immediately from Lemma 3.59. If n = 1, there is

nothing to show.

Assume G is a non-empty graph and n > 2. Let GL
3 be the graph after a

move of Left on u from G, GL
2 the graph after a move of Left on a neighbour

of u from G, GL
1 the graph after a move of Left on any other vertex from G,

and GR
the graph after a move of Right on any vertex from G.

We get

Left options of

(G,u) ⊙ PBB
n

Left options of

(G,u) ⊙ PB
1

(GL
1 , u)⊙ PBB

n (GL
1 , u)⊙ PBB

1 by indu
tion

GL
2 + onB GL

2 + oB by Lemma 3.60

GL
3 +Won − 1B GL

3 +WB by Lemma 3.59

(G \ {u}) +Won−2B (G \ {u}) by Lemma 3.60

((G,u) ⊙ PBW
0 ) +

Won−3B
((G,u) ⊙ PBW

0 ) by Lemma 3.59

((G,u) ⊙ PBW
i ) +

Won−i−3B
∀i ∈ J0;n− 3K

(G,u) ⊙ PBW
n−2

(G,u) ⊙ PBW
n−1
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We 
an see almost all of them are one-to-one equal. We assure no Left

option of (G,u) ⊙ PBB
n is greater than or equal to (G,u) ⊙ PB

1 and no Left

option of (G,u)⊙PB
1 is greater than or equal to (G,u)⊙PBB

n for the others

as follows:

((G,u) ⊙ PBW
i ) +Won−i−3B 6

+ (G \ {u}) +BoiW +Won−i−3B
≡+ G \ {u}
�+ (G,u)⊙ PB

1

(G,u) ⊙ PBW
n−2 6+ (G \ {u}) +Bon−2W

≡+ G \ {u}

�+ (G,u)⊙ PB
1

(G,u) ⊙ PBW
n−1 6

+ (G \ {u}) +Bon−1W
≡+ G \ {u}
�+ (G,u)⊙ PB

1

We also get

Right options of

(G,u) ⊙ PBB
n

Right options of

(G,u) ⊙ PBB
1

(GR, u)⊙ PBB
n (GR, u)⊙ PBB

1 by indu
tion

G+Bon−2B G+B by Lemma 3.59

((G,u) ⊙ PBB
0 ) +

Bon−3B

((G,u) ⊙ PBB
i ) +

Bon−i−3B
∀i ∈ J1;n − 3K

((G,u) ⊙ PBB
n−2) +B

We 
an see almost all of them are one-to-one equal. We assure no Right

option of (G,u)⊙PBB
n is greater than or equal to (G,u)⊙PB

1 and no Right

option of (G,u)⊙PB
1 is greater than or equal to (G,u)⊙PBB

n for the others

as follows:

((G,u) ⊙ PBB
0 ) +Bon−3B ≡+ ((G \ {u}) +B +B)

>
+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

((G,u) ⊙ PBB
i ) +Bon−i−3B ≡+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

((G,u) ⊙ PBB
n−2) +B ≡+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

Hen
e we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PBB

1 .

3. and 4. follow from 1. and 2.

�
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We now get ba
k to smaller sets of positions, leading to an algorithm to

�nd the out
ome of any grey tree with at most one vertex having degree at

least 3, that is Theorem 3.77.

We start with two simple positions for whi
h we give the value.

Lemma 3.63 (Berlekamp et al. [4℄, Conway [10℄)

1. oBo ≡+ 0.
2. ooBoo ≡+ 0.

Proof. oBo = {o, (W +W ) | Bo} = {∗,−1 + (−1)12} ≡+ 0.

ooBoo = {WBoo, (W + oo), (oW +Wo) | BBoo, (B +Boo)}

≡+ {−
1

2
,−1 + 0,−

1

2
−

1

2
| 1, 1 +

1

2
}

≡+ 0

�

These two positions are now 
andidates for applying Theorem 3.57: 
on-

sidering the middle vertex as u, we now have ooo+u = 0 = −ooo+u = ooo−u
and ooooo+u = 0 = −ooooo+u = ooooo−u .

A similar result on arbitrarily long path would help too, and that is

Lemma 3.66. To get there, we �nd the values of any maximal 
onne
ted

subpositions of positions we 
an rea
h from the original positions, whi
h are

given in the two following lemmas, following the same pattern as for Lemmas

3.59, 3.60 and Theorem 3.61.

First, we see the values of paths whose leaves are reserved, having exa
tly

one extra reserved vertex. If that extra reserved vertex was adja
ent to a leaf

reserved for the same player, we 
ould use Corollary 3.58 and then 
on
lude

with Lemma 3.60, to get a value whi
h is a
tually di�erent from the general

pattern. Hen
e, we only 
onsider the other 
ases.

Lemma 3.64

1. ∀n > 1,m > 1, BonBomB ≡+ 1.
2. ∀n > 0,m > 0, WonBomW ≡+ −1.
3. ∀n > 0,m > 1, WonBomB ≡+ 0.

Proof.

1.

BoBoB = {WBoB, oB, (BW +WB) | (B +BoB)}

≡+ {0,
1

2
, (0 + 0) | (1 + 1)}

≡+ 1
When n > 2 or m > 2, it follows from Theorem 3.62.

2.

WBW = (W +B +W ) = −1 + 1 + (−1) ≡+ −1.
WBoW = (W +BoW ) ≡+ −1 + 0 = −1.
WoBoW = {(W + oW ), (WW +WW ) | BBoW,BoW}

≡+ {−1−
1

2
,−1 + (−1) |

1

2
, 0}

≡+ −1
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When n > 2 or m > 2, it follows from Theorem 3.62.

3.

WBoB = (W +BoB) ≡+ −1 + 1 ≡+ 0.
WoBoB = {(W + oB), (WW +WB),Wo,WoBW

| BBoB,BoB, (WoB +B)}

≡+ {−1 +
1

2
,−1 + 0,−

1

2
,−1 |

3

2
, 1, 0 + 1}

≡+ 0
When n > 2 or m > 2, it follows from Theorem 3.62. �

We now see the values of paths where exa
tly one leaf is reserved, as

well as exa
tly one extra vertex. Again, if that extra reserved vertex was

adja
ent to a leaf reserved for the same player, we 
ould use Corollary 3.58

and 
on
lude with Lemma 3.60, to get a value whi
h is a
tually di�erent

from the general pattern. Hen
e, we again only 
onsider other 
ases.

Lemma 3.65

1. ∀n > 1,m > 3, BonBom = 1
2 .

2. ∀n > 0,m > 3, WonBom = −1
2 .

Proof. BonBom = (BonBoW +Bo) ≡+ 0 + 1
2 = 1

2 .

WonBom = (WonBoW +Bo) ≡+ −1 + 1
2 ≡+ −1

2 . �

Finally, we get the pattern on arbitrary long paths, where reserving ex-

a
tly one vertex for a player does not give them an advantage, provided there

are at least three verti
es on ea
h side of this vertex.

Lemma 3.66 (Berlekamp et al. [4℄, Conway [10℄)

∀n > 3,m > 3, onBom ≡+ 0.

Proof.

onBom ≡+ (onBoW+Bo) ≡+ (WoBoW+Bo+Bo) ≡+ −1+ 1
2+

1
2 ≡+ 0

by Theorem 3.62. �

We now �nd the out
ome of the set of positions we 
annot solve using

only Lemmas 3.63 and 3.66 before applying Theorem 3.57, that are stated

in Theorem 3.75: positions of the form onxoo with n at least 3. As before,
we analyse the values of all maximal 
onne
ted subpositions that players 
an

rea
h from the initial position, whi
h we are able to sum, but as there are

more kinds of these positions, we need more intermediate lemmas.

First, we look at positions where a player would have played on the non-

spe
ial vertex of x, and a player, not ne
essarily the other player, would have

played on the farther leaf from the spe
ial vertex of x.

Lemma 3.67

1. ∀n > 0, BonBoo ≡+ 1.
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2. ∀n > 1, WonBoo ≡+ 0.

Proof. BBoo ≡+ B + oo ≡+ 1.
BoBoo = {WBoo, oo, (B +Wo), (Bo+W ), BoBW

| (B +Boo), (BoB +B), BoBB}

≡+ {−
1

2
, 1 −

1

2
,
1

2
+ (−1), 0 | 1 +

1

2
, 1 + 1,

3

2
}

≡+ 1

WoBoo = {(W + oo), (WW +Wo), (Wo+W ),WoBW
| BBoo,Boo, (WoB +B),WoBB}

≡+ {−1 + 0,−1−
1

2
,−

1

2
+ (−1),−1 | 1,

1

2
, 0 + 1,

1

2
}

≡+ 0
When n > 2, it follows from Theorem 3.62. �

We now �nd the value of a game where a player would have played on

the non-spe
ial vertex of x, using the result we just got from Lemma 3.67.

Lemma 3.68 ∀n > 3, onBoo ≡+ 1
2 .

Proof. onBoo ≡+ (WoBoo+Bo) ≡+ 0 + 1
2 = 1

2 by Theorem 3.62. �

We now 
onsider paths where exa
tly two verti
es are reserved, one being

a leaf and the other being the neighbour of the other leaf. If those two

verti
es were neighbours, we 
ould either use Corollary 3.58 and 
on
lude

with Theorem 3.61 or use Corollary 3.54 and 
on
lude with Lemma 3.60,

both giving values di�erent from the general pattern. Hen
e, again, we only


onsider other 
ases.

Lemma 3.69

1. ∀n > 1, BonBo ≡+ 3
4 .

2. ∀n > 1, WonBo ≡+ −1
4 .

Proof.

BoBo = {WBo, o, (BW +W ), Bo | (B +Bo), BoB}

≡+ {−
1

2
, ∗, 0 + (−1),

1

2
| 1 +

1

2
, 1}

≡+ 3

4
WoBo = {(W + o), (WW +W ),Wo | BBo,Bo,WoB}

≡+ {−1 + ∗,−1 + (−1),−
1

2
| 1∗,

1

2
, 0}

≡+ −
1

4
When n > 2, it follows from Theorem 3.62. �

We now use Lemma 3.69 to �nd the value of a path where exa
tly one

vertex is reserved, provided one of its neighbours is a leaf and there are at

least two verti
es in the other dire
tion, the 
ases where there is one or none

having been solved earlier and yielding di�erent values.
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Lemma 3.70 ∀n > 2, oBon ≡+ 1
4 .

Proof.

oBoo = {oo, (W +Wo), (o+W ), oBW | Boo, (oB +B), oBB}

≡+ {0,−1 −
1

2
, ∗+ (−1),−

1

2
|
1

2
,
1

2
+ 1, 1∗}

≡+ 1

4
Let n > 3 be an integer.

oBon ≡+ (oBoW +Bo) ≡+ −1
4 +

1
2 ≡+ 1

4 by Theorem 3.62. �

The next lemma gives the value of two small positions: BxB and BxW ,

as they do not follow the rule we state in Lemma 3.72.

Lemma 3.71

1. BxB ≡+ 3
2 .

2. BxW ≡+ ∗.

Proof.

BxB = {oWB,W,BWB | (B +B +B), BBB}

≡+ {−1,
1

2
, 1 | 2, 3}

≡+ 3

2

BxW = {oWW, (W +W ), BWW | oBB, (B +B), BBW}
≡+ {−2,−1∗, 0 | 0, 1∗, 2}
≡+ ∗

�

We 
an use these results to �nd the value of the game after the players

have played from onxoo on the two leaves not in the x, where n is at least 3.

Lemma 3.72

1. ∀n > 1, BonxB ≡+ 5
4 .

2. ∀n > 1, BonxW ≡+ −1
4 .

Proof. We show the results simultaneously by indu
tion on n.
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BonxB = {Won−1xB,Won−2xB,

n−3⋃

i=0

(BoiW +Won−i−3xB),

(Bon−2W + oWB), (Bon−1W +W ), BonWB,BonWo

| (B +Bon−2xB),

n−i−3⋃

i=0

(BoiB +Bon−i−3xB),

(Bon−2B + oBB), (Bon−1B +B +B), BonBB}

≡+ {−1, ∗,
1

4
,
1

2
, 1 |

3

2
, 2∗,

9

4
,
5

2
, 3} by induction

≡+ 5

4
.

BonxW = {Won−1xW,Won−2xW,
n−3⋃

i=0

(BoiW +Won−i−3xW ),

(Bon−2W + oWW ), (Bon−1W +W +W ), BonWW

| (B +Bon−2xW ),
n−i−3⋃

i=0

(BoiB +Bon−i−3xW ),

(Bon−2B + oBW ), (Bon−1B +B), BonBW,BonBo}

≡+ {−2,−
3

2
,−

5

4
,−1∗,−

1

2
| 0,

1

2
,
3

4
, 1∗, 2} by induction

≡+ −
1

4
.

�

Now we give the value of the game after they have only played on one of

these two leaves, starting with the one 
loser to the verti
es represented by

the x.

Lemma 3.73 ∀n > 2, onxB ≡+ 3
4 .

Proof.

onxB = {Won−2xB,

n−3⋃

i=0

(oiW +Won−i−3xB), (on−2W + oWB),

(on−1W +W ), onWB, onWo

| Bon−2xB,

n−3⋃

i=0

(oiB +Bon−i−3xB), (on−2B + oBB),

(on−1B +B +B), onBB}

≡+ {−
3

2
,−

3

4
,−

1

2
∗,−

1

4
, 0,

1

4
,
1

2
| 1,

5

4
,
3

2
∗
7

4
,
9

4
,
5

2
}

≡+ 3

4
.

�

Finally, we give the value of the game after they have only played on the

leaf farther to the x.
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Lemma 3.74 ∀n > 1, Bonxoo ≡+ 1
2 .

Proof. We show the results by indu
tion on n.

Bonxoo = {Won−1xoo,Won−2xoo,

n−3⋃

i=0

(BoiW +Won−i−3xoo),

(Bon−2W + oWoo), (Bon−1W +W +Wo),
BonWoo, (BonWo+W ), BonxW

| (B +Bon−2xoo),

n−3⋃

i=0

(BoiB +Bon−i−3xoo),

(Bon−2B + oBoo), (Bon−1B +B +Bo),
BonBoo, (BonBo+B), BonxB}

≡+ {−
3

2
,−

3

4
,−

1

2
,−

1

4
, 0 | 1,

5

4
,
3

2
,
7

4
,
5

2
} by induction

≡+ 1

2
.

�

With all these values, we are able to give the value of any position of the

form onxoo, with n being at least 3.

Theorem 3.75 (Berlekamp et al. [4℄, Conway [10℄)

∀n > 3, onxoo ≡+ 0.

Proof.

onxoo = {Won−2xoo,
n−3⋃

i=0

(oiW +Won−i−3xoo), (on−2W + oWoo),

(on−1W +W +Wo), onWoo, (onWo+W ), onxW

| Bon−2xoo,
n−3⋃

i=0

(oiB +Bon−i−3xoo), (on−2B + oBoo),

(on−1B +B +Bo), onBoo, (onBo+B), onxB}

≡+ {−2,−
3

2
,−

5

4
,−1,−

3

4
,−

1

2
|
1

2
,
3

4
, 1,

5

4
,
3

2
, 2}

≡+ 0.

�

Example 3.76 Figure 3.15 gives an example of su
h a tree, representing

o5xoo.

We now state the general theorem about grey subdivided stars.

Theorem 3.77 (Berlekamp et al. [4℄, Conway [10℄) Let T be a tree

where all verti
es are grey, and exa
tly one vertex has degree at least 3.
We 
all that vertex v and we root T at v.
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Figure 3.15: A subdivided star where removing the 
enter 
hanges the value

(i) If there are exa
tly three leaves, one at depth 1, another at depth 2 and

the last at depth at least 3, or there are an odd number of leaves at

depth 1, then the game has value 0.

(ii) Otherwise, the game has value ∗.

Proof. The �rst 
ase stated, with three leaves, 
orresponds exa
tly to posi-

tions of the form onxoo, that we proved have value 0 in Theorem 3.75. On

any other 
ase, we 
an use either Lemma 3.63 or 3.66 together with Theo-

rem 3.57 to remove the vertex v from the graph without 
hanging the value

of the position. As we only leave a disjun
tive sum of paths, whi
h all have

value 0 apart from isolated verti
es, all we need to know is the parity of

the number of these isolated verti
es to get the value of the position. These

isolated verti
es were exa
tly the leaves at depth 1, so if they are in odd

number, the value is ∗, and otherwise it is 0. �

Example 3.78 Figures 3.16 and 3.17 give examples of subdivided stars

where the 
entral vertex 
an be removed without 
hanging the value: one


an apply Theorem 3.57 together with Lemma 3.63 or 3.66 in both 
ases,

on paths ending on leaves of the same depth status, that is the number in-

di
ated next to it. In Figure 3.16, the number of leaves at distan
e 1 from

the 
entral vertex, that be
ome isolated verti
es after the 
entral vertex is

removed, is odd, so the position has value ∗. In Figure 3.17, that number is

even, so the position has value 0. There are 9 paths on Figure 3.16 and 8 on

Figure 3.17 where we 
an apply Theorem 3.57 to remove the 
entral vertex.

3.3.3 Caterpillars

We now work on �nding the out
ome of grey 
aterpillars. Re
all that a


aterpillar is a tree su
h that the set of verti
es of degree at least 2 forms a

path. Re
all that sin
e all verti
es are grey, the position is its own opposite,

and has value 0 or ∗. We here fo
us on 
aterpillars of the form xn.

First, when n is even, the position is symmetri
, so it ful�ls the 
onditions

of Theorem 3.51.

Theorem 3.79 ∀n > 0, x2n ≡+ 0.
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3+

3+

3+ 1

3+ 1 1 2

Figure 3.16: A subdivided star with

value ∗

3+ 3+

3+

3+

1 2

1 2

Figure 3.17: A subdivided star with

value 0

When n is odd, any of the two involutions on the verti
es keeping edges

between the images of adja
ent verti
es would have at least two �xed points:

the two 
entral verti
es. This is why we need intermediate lemmas. Consid-

ering all maximal 
onne
ted subpositions that players 
an rea
h from su
h a


aterpillar seems tedious as they do not seem to simplify as easily as before,

so we use a di�erent approa
h: we �nd good enough answer for one player

and state the other player 
annot do better than some value to ensure some

bounds on the values of some positions leading to the value of the very �rst

game.

First, we �nd su
h values and bounds on a few sets of positions, all stated

in a single lemma as the proofs are intertwined.

Lemma 3.80

1. ∀n > 1, x2nB ≡+ 3
4 and x2n−1B ≡+ 1

2 .

2. ∀n > 0, Bx2nB ≡+ 1 and Bx2n+1B ≡+ 3
2 .

3. ∀n > 0, Bx2nW ≡+ 0 and Bx2n+1W ≡+ ∗.

4. ∀n > 0,m > 0, x2nBx2mB >+ 1, x2n+1Bx2m+1B >+ 1,
x2n+1Bx2mB >+ 3

4 and x2nBx2m+1B >+ 3
4 .

5. ∀n > 0,m > 0, x2nBx2mW >+ −1
4 , x

2n+1Bx2m+1W >+ −1
4 ,

x2n+1Bx2mW >+ −1
2 and x2nBx2m+1W >+ −1

2 .

6. ∀n > 0,m > 0, Bx2nBx2mB >+ 3
2 , Bx2n+1Bx2m+1B >+ 3

2 ,

Bx2n+1Bx2mB >+ 3
2 and Bx2nBx2m+1B >+ 3

2 .

7. ∀n > 0,m > 0, Bx2nBx2mW >+ 0, Bx2n+1Bx2m+1W >+ 0,
Bx2n+1Bx2mW >+ 1

2 and Bx2nBx2m+1W >+ 1
2 .

The proof of this lemma 
an be found in Appendix B.3. The idea is to

list possible moves. Then, we use Theorems 3.53 and 3.55 and indu
tion to

give a bound to the value of the position or to the value of a possible answer.
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We now show that the answer we propose for Left after some move of

Right is winning.

Lemma 3.81 ∀n > 0,m > 0, x2n+1Bx2m+1Wx >+ 0.

Proof. We prove Left has a winning strategy in x2n+1Bx2m+1Wx if Right

starts. Consider his possible moves from x2n+1Bx2m+1Wx. He 
an move to:

• B+oBx2n−1Bx2m+1Wx, having value at least B+x2nBx2m+1W +x,
whi
h has value at least

1
2 .

• xiBo+B + oBx2n−i−2Bx2m+1Wx, having value at least

1
2 or

1
2∗.

• x2n−1Bo+B +Bx2m+1Wx, having value at least 1 or 1∗.
• x2n+1B +B + oBx2m−1Wx, having value at least

3
4 .

• x2n+1BxiBo+B + oBx2m−i−2Wx, having value at least

1
4 or

1
4∗.

• x2n+1Bx2m−1Bo+B + x, having value at least 1 or 1∗.
• x2n+1Bx2mBo+Bo, having value at least

1
2 or

1
2∗.

• x2n+1Bx2m+1 +B, having value at least 1 or 1∗.
• xiBx2n−iBx2m+1Wx. Then Left 
an answer to xiBx2n−iBWx2mWx,

whi
h has value at least 0.
• x2n+1BBx2mWx, having value at least x2n+1 + Bx2m + Wx, whi
h

has value at least

1
4 or

1
4∗.

• x2n+1BxiBx2m−iWx. Then left 
an answer to

x2n+1BxiBWx2m−i−1Wx, whi
h has value at least 0 when i is

odd, or to x2n+1Bxi−1WBx2m−iWx, whi
h has value at least 0 when

i is even.
• x2n+1Bx2mBWx, having value more than

3
4 .

• x2n+1Bx2m+1WB, having value at least

1
4 .

�

We now state the theorem, that almost all 
aterpillars of the form xn

have value 0.

Theorem 3.82 ∀n 6= 3, xn ≡+ 0, and xxx ≡+ ∗.

Proof. When n is even, it is true by Theorem 3.79. When n 6 3, it is true
by Theorem 3.77. Now assume n > 5 is odd. We prove the se
ond player has

a winning strategy in xn. Without loss of generality, we may assume Right

starts the game and 
onsider his possible moves from xn. He 
an move to:

• B + oBxn−2
, having value at least 1.

• xiBo+B + oBxn−i−3
, having value at least 1 or 1∗.

• x2iBxn−2i−1
. Without loss of generality, we may assume 2i > n−1

2 > 2.
Then Left 
an answer to x2i−1WBxn−2i−1

, whi
h has value

1
4 .

• x2i+1Bxn−2i−2
. Without loss of generality, we may assume

2i+ 1 > n−1
2 > 2 . Then Left 
an answer to xWx2i−1Bxn−2i−2

, whi
h

has value at least 0.
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We now 
onsider other 
aterpillars. Whenever one vertex is adja
ent to

two leaves or more, we 
an remove that vertex for the game without 
hanging

its value, using Lemma 3.63 and Theorem 3.57. Theorems 3.61 and 3.82 are

then enough to 
on
lude most 
ases, but the value of arbitrary 
aterpillars

is still an open problem.

Example 3.83 Figure 3.18 shows an example of a �more general� 
aterpillar

of whi
h we 
an determine the value using our results. On ea
h step, the

vertex we 
an remove using Theorem 3.57 is all grey (without the bla
k line

surrounding it like the other verti
es). We added a 1 
lose to its neighbouring
leaves, to see where the theorem 
an be applied. The dashed line is there to

ensure that anyone, by moving the in
ident vertex through it, sees that last


omponent as x4. On the resulting graph, there are �ve isolated verti
es,

ea
h having value ∗, an x3 and an x4, having respe
tively value ∗ and 0, so
the position has value 0. We get that 0 is the value of the original position,

on a 
onne
ted 
aterpillar.

Example 3.84 Figure 3.19 shows an example of a 
aterpillar whi
h is not

of the form xn and that 
annot be simpli�ed using Lemma 3.63 and Theo-

rem 3.57. Therefore, our results are not su�
ient to give the value of this

position.

3.3.4 Cographs

We give an algorithm for 
omputing in linear time the value of a 
ograph

where no vertex is reserved. First, we build the asso
iated 
otree. Then, at

ea
h node u of the 
otree starting from the leaves, we label the node by the

size of the maximum independent set and the value of the graph below it as

follows:

1. If u is a leaf, then the maximum independent set has size 1 and the value

is ∗.

2. If u 
orresponds to a disjoint union of two 
ographs, the size of the max-

imum independent set and the value are the sum of the values of these

two 
ographs.

3. Otherwise, u 
orresponds to a join of two 
ographs, the size of the maxi-

mum independent set is the maximum of the ones of these two 
ographs,

and the value is the value of the 
ograph whi
h has the maximum inde-

pendent set of greater size, ex
ept that the value is 0 when their respe
tive

maximum independent sets have the same size.
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1

1 1

1

1

Figure 3.18: Finding the value of a 
aterpillar by removing verti
es a

ording to

Lemma 3.63 and Theorem 3.57

Figure 3.19: A 
aterpillar where our results 
annot 
on
lude alone
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Proof. We only need to ensure by indu
tion that if the value of the graph is

∗, any player who starts the game has a winning strategy su
h that their �rst

move is on a vertex 
ontained in a maximum independent set. When the

graph is a single vertex the result is true. When the graph is a disjoint union

of two 
ographs, the �rst player has a winning move only if one 
omponent

has value ∗ and the other 
omponent has value 0. A winning move is to move

the 
omponent of value ∗ to value 0, and there exists su
h a move on a vertex


ontained in a maximum independent set of that 
omponent by indu
tion.

That vertex is also 
ontained in a maximum independent set of the whole

graph, so the result is true. When the graph is a join of two 
ographs, the

�rst player has a winning move only if the 
omponent having the maximum

independent set of greater size has value ∗. A winning move is to move that


omponent of value ∗ to value 0, and there exists su
h a move on a vertex


ontained in a maximum independent set of that 
omponent by indu
tion.

That vertex is also 
ontained in a maximum independent set of the whole

graph, so the result is true. �

Example 3.85 Figures 3.20 and 3.21 illustrate the algorithm. Figure 3.20

is a 
ograph with all verti
es grey. Figure 3.21 is the asso
iated 
otree:

the leaves 
orrespond to the verti
es of the 
ograph; the D internal nodes

indi
ate when two 
ographs are gathered into one through disjoint union; the

J internal nodes indi
ate when two 
ographs are gathered into one through

join. Next to ea
h node, there is a 
ouple indi
ating the value and the size of

a maximum independent set of the subgraph indu
ed by the verti
es below

that node.

3.4 Perspe
tives

In this 
hapter, we 
onsidered the games Timbush, Toppling Dominoes

and Col.

In the 
ase of Timbush, we gave an algorithm to �nd the out
ome of any

orientation of paths with 
oloured ar
s and an algorithm to �nd the out
ome

of any dire
ted graph with ar
s 
oloured bla
k or white.

Note that if the 
onne
ted dire
ted graph we 
onsider 
ontains a 2-edge-

onne
ted 
omponent, any ar
 of that 
omponent is a winning move, but if

all these ar
s are bla
k, or they are all white, we do not know if the other

player have a winning move.

Hen
e we ask the following questions.

Question 3.86 Can one �nd a polynomial-time algorithm whi
h gives the

out
ome of any Timbush position on dire
ted graphs with 
oloured ar
s?

Another di�eren
e in result with Timber is that we do not give the value

of any orientation of paths. That problem is already non-trivial if we only

look at orientation of paths with ar
s 
oloured bla
k or white.
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a b c d e

f g

h i j

Figure 3.20: A 
ograph

a
(∗, 1)

c
(∗, 1)

b
(∗, 1)

d
(∗, 1)

e
(∗, 1)

f

(∗, 1)

g
(∗, 1)

h
(∗, 1)

i
(∗, 1)

j

(∗, 1)

D (0, 2)

J (0, 2)

D (0, 3)

J(0, 1)

J
(0, 3)

D (0, 2)

J(∗, 3)

D (0, 2)

D(∗, 3)

Figure 3.21: Its 
orresponding 
otree, labelled by our algorithm
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Question 3.87 Is there a polynomial-time algorithm for �nding the value of

any Timbush position on dire
ted paths with ar
s 
oloured bla
k or white?

In the 
ase of Toppling Dominoes, we proved that for any value of

the form {a|b} with a > b, {a||b|c} with a > b > c, and {a|b||c|d} with

a > b > c > d, there exists a Toppling Dominoes position on a single row

that have this value. We even found all representatives of positions of the

form {a|b}, whi
h leads us to the following 
onje
tures.

Conje
ture 3.88 Let a > b > c be numbers and G a Toppling Dominoes

position with value {a|{b|c}}. Then G is aLRbRLc, aEbRLc or one of their
reversal. Furthermore, if a = b, then G is aLRbRLc or its reversal.

Conje
ture 3.89 Let a > b > c > d be numbers and G a Toppling

Dominoes position with value {{a|b}|{c|d}}. Then G is bRLaLRdRLc,
bRLaEdRLc or one of their reversal.

In the 
ase of Col, we restated some known results and went further in

�nding the values of most grey 
aterpillars and all grey 
ographs. Neverthe-

less, the problem on general trees is still open.

Question 3.90 What is the 
omplexity of �nding the out
ome of any Col

position on a tree?
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Chapter 4

Misère games

The misère version of a game is a game with the same game tree where the

vi
tory 
ondition is reversed, that is the �rst player unable to move when it is

their turn wins. Under the misère 
onvention, the equivalen
e of two games

is very limited, as proved by Mesdal and Ottaway [25℄ and Siegel in [38℄. In

parti
ular, the equivalen
e 
lass of 0 is restri
ted to 0 itself, whi
h shows a

serious 
ontrast with the normal 
onvention where any game having out
ome

P is equivalent to 0. This is probably why Plambe
k and Siegel de�ned in

[32, 34℄ an equivalen
e relationship under restri
ted universes, leading to a

breakthrough in the study of misère play games.

De�nition 4.1 (Plambe
k and Siegel [32, 34℄) Let U be a universe of

games, G and H two games (not ne
essarily in U). We say G is greater

than or equal to H modulo U in misère play and write G >− H (mod U)
if o−(G +X) > o−(H +X) for every X ∈ U . We say G is equivalent to H
modulo U in misère play and write G ≡− H (mod U) if G >− H (mod U)
and H >− G (mod U).

For instan
e, Plambe
k and Siegel [32, 33, 34℄ 
onsidered the universe of

all positions of given games, espe
ially o
tal games. Other universes have

been 
onsidered, in
luding the universes A of sums of alternating games [27℄,

I of impartial games [4, 10℄, D of di
ot games [2, 26, 24℄, E of dead-ending

games [28℄, and G of all games [38℄. These 
lasses are ordered by in
lusion

as follows:

I ⊂ D ⊂ E ⊂ G .

To simplify notation, we use from now on >
−
U and ≡−

U to denote superi-

ority and equivalen
e modulo the universe U . Observe also that if U and U ′

are two universes with U ⊆ U ′
, then for any two games G and H, G 6

−
U H

whenever G 6
−
U ′ H.

Given a universe U , we 
an determine the equivalen
e 
lasses under ≡−
U

and form the quotient semi-group U/ ≡−
U . This quotient, together with the

tetra-partition of elements into the sets L, N , P and R, is 
alled the misère

monoid of the set U , denoted MU . It is usually desirable to have the set of

games U 
losed under disjun
tive sum, taking options and 
onjugates; when

a set of games is not already thus 
losed, we often 
onsider its 
losure under

these three operations, that we 
all the 
losure of the set.
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A Left end is a game where Left has no move, and a Right end is a

game where Right has no move. In misère play, end positions are important

positions to see for a set of games if their 
onjugates are their opposites, that

is if G+G ≡−
U 0.

Lemma 4.2 Let U be any game universe 
losed under 
onjugation and

followers, and let S be a set of games 
losed under followers. If

G+G+X ∈ L− ∪ N−
for every game G ∈ S and every Left end X ∈ U ,

then G+G ≡−
U 0 for every G ∈ S.

Proof. Let S be a set of games with the given 
onditions. Sin
e U is 
losed

under 
onjugation, by symmetry we also have G + G + X ∈ R− ∪ N−
for

every G ∈ S and every Right end X ∈ U . Let G be any game in S and

assume indu
tively that H +H ≡−
U 0 for every follower H of G. Let K be

any game in U , and suppose Left wins K. We must show that Left 
an win

G+G+K. Left should follow her usual strategy in K; if Right plays in G
or G to, say, GR +G +K ′

, with K ′ ∈ L− ∪ P−
, then Left 
opies his move

and wins as the se
ond player on GR+G
L
+K ′ = GR+GR+K ′ ≡−

U 0+K ′
,

by indu
tion. Otherwise, on
e Left runs out of moves in K, say at a Left

end K ′′
, she wins playing next on G+G+K ′′

by assumption. �

The universes we fo
us on in this 
hapter are the di
ot universe, denoted

D, and the dead-ending universe, denoted E . A game is said to be di
ot

either if it is {·|·} or if it has both Left and Right options and all these

options are di
ot. A Left (Right) end is a dead end if every follower is also

a Left (Right) end. A game is said to be dead-ending if all its end followers

are dead ends.

As with normal games, to simplify proofs, we often do not state results

on the 
onjugates of games on whi
h we proved similar results. With the

following proposition, we justify this possibility and we observe that passing

by 
onjugates in the universe of 
onjugates, any result on the Left options


an be extended to the Right options, and vi
e versa.

Proposition 4.3 Let G and H be any two games, and U a universe. Denote

by U the universe of the 
onjugates of the elements of U . If G >
−
U H, then

G 6
−
U
H. As a 
onsequen
e, G ≡−

U H ⇐⇒ G ≡−
U
H.

Proof. For a game X ∈ U , suppose Left 
an win G + X playing �rst

(respe
tively se
ond). We show that she also has a winning strategy on

H +X. Looking at 
onjugates, Right 
an win G+X = G+X. As X ∈ U

and G >
−
U H, Right 
an win H +X . Thus Left 
an win H +X = H +X

and G 6
−
U
H. �

Relying on this proposition, we often give the results only on Left options

in the following, keeping in mind that they naturally extend to the Right



Chapter 4. Misère games 103

options provided the result holds on the universe of 
onjugate. This is always

the 
ase in the following sin
e we either prove our results on all universes,

or on the universe D of di
ots or E of dead-endings whi
h are their own


onjugates.

Considering a game, it is quite natural to observe that adding an option

to a player who already has got some 
an only improve his position (hand-

tying prin
iple). It was already proved in [25℄ in the universe G of all games.

As a 
onsequen
e, this is true for any subuniverse U of G.

Proposition 4.4 Let G be a game with at least one Left option, S a set

of games and U a universe of games. Let H be the game de�ned by

HL = GL ∪ S and HR = GR
. Then H >

−
U G.

In this 
hapter, we frequently use the fa
t that, when H has an additive

inverse H ′
modulo U , G >

−
U H if and only if G + H ′ >

−
U 0 when all these

games are elements of U .

Proposition 4.5 Let U be a universe of game 
losed under disjun
tive sum,

H,H ′ ∈ U be two games being inverses to ea
h other modulo U . Then for

any game G ∈ U , we have G >
−
U H if and only if G+H ′ >

−
U 0.

Proof. Assume �rst G >
−
U H. Let X ∈ U a game su
h that Left wins X.

Then, as H+H ′ ≡−
U 0, Left wins H+H ′+X. As H ′+X ∈ U and G >

−
U H,

Left wins G+H ′ +X. Hen
e G+H ′ >
−
U 0.

Assume now G+H ′ >
−
U 0. Let X ∈ U a game su
h that Left wins H+X.

As H + X ∈ U and G + H ′ >
−
U 0, Left wins G + H ′ + H + X. Then, as

G+X ∈ U and H +H ′ ≡−
U 0, Left wins G+X. Hen
e G >

−
U H. �

In this 
hapter, we �rst 
onsider the games we studied previously, now

under misère 
onvention, and study some misère universes. Se
tion 4.1 is

dedi
ated the spe
i�
 games we mentioned, on whi
h we give 
omplexity

results and 
ompare them with their normal version 
ounterparts. In Se
-

tion 4.2, we study the universe of di
ot games, de�ne a 
anoni
al form for

them, and 
ount the number of di
ot games in 
anoni
al form born by day

3. In Se
tion 4.3, we study the universe of dead-ending games, in parti
ular

dead ends, normal 
anoni
al-form numbers and a family of games that would

be equivalent to 0 modulo the dead-ending universe.

The results presented in Subse
tion 4.1.1 are a joint work with Sylvain

Gravier and Simon S
hmidt. The results presented in Se
tion 4.1.2 are about

to appear in [16℄ (joint work with Éri
 Du
hêne). The results presented

in Subse
tion 4.1.3 appeared in [29℄ (joint work with Ri
hard Nowakowski,

Emily Lamoureux, Stephanie Mellon and Timothy Miller). The results pre-

sented in Subse
tion 4.1.6 are a joint work with Paul Dorbe
 and Éri
 Sopena.

The results presented in Se
tion 4.2 are a joint work with Paul Dorbe
, Aaron

Siegel and Éri
 Sopena [15℄. The results presented in Se
tion 4.3 appeared

in [28℄ (joint work with Rebe

a Milley).
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4.1 Spe
i�
 games

We start by looking at the games we studied in the previous 
hapters, with

the addition of one game, Geography, and give some results about their

misère version. In parti
ular, we see that some games, su
h as VertexNim,

behave similarly in their misère and normal version, while others, su
h as

Col, ask for a di�erent strategy from the players. The 
omplexity of �nding

the out
ome of a position might also be di�erent in some games.

In this se
tion, we de�ne the impartial game Geography and show the

pspa
e-
ompleteness of its variants under the misère 
onvention. We then

tra
t our results on VertexNim from normal play to misère play, �nd the

misère out
ome of Timber positions on oriented paths, redu
e Timbush

positions to forests, give the misère out
ome of any single row of Toppling

Dominoes and the misère monoid of Toppling Dominoes positions with-

out grey dominoes, and the misère out
ome of any Col position on a grey

subdivided star.
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Figure 4.1: Playing a move in Vertex Geography

4.1.1 Geography

Geography is an impartial game played on a dire
ted graph with a token

on a vertex. There exist two variants of the game: Vertex Geography

and Edge Geography. A move in Vertex Geography is to slide the

token through an ar
 and delete the vertex on whi
h the token was. A move

in Edge Geography is to slide the token through an ar
 and delete the

edge on whi
h the token just slid. In both variants, the game ends when the

token is on a sink.

A position is des
ribed by a graph and a vertex indi
ating where the

token is.

Example 4.6 Figure 4.1 gives an example of a move in Vertex Geogra-

phy. The token is on the white vertex. The player whose turn it is 
hooses

to move the token through the ar
 to the right. After the vertex is removed,

some verti
es (on the left of the dire
ted graph) are no longer rea
hable.

Figure 4.2 gives an example of a move in Edge Geography. The token is

on the white vertex. The player whose turn it is 
hooses to move the token

through the ar
 to the right. After that move, it is possible to go ba
k to

the previous vertex immediately as the ar
 in the other dire
tion is still in

the game.

Geography 
an also be played on an undire
ted graph G by seeing it

as a symmetri
 dire
ted graph where the vertex set remains the same and

the ar
 set is {(u, v), (v, u)|(u, v) ∈ E(G)}, ex
ept that in the 
ase of Edge

Geography, going through an edge (u, v) would remove both the ar
 (u, v)
and the ar
 (v, u) of the dire
ted version.

Example 4.7 Figure 4.3 gives an example of a move in Edge Geography

on an undire
ted graph. The token is on the white vertex. The player whose

turn it is 
hooses to move the token through the ar
 to the right. After that

move, it is not possible to go ba
k to the previous vertex immediately as the

edge between the two verti
es has been removed from the game.
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Figure 4.2: Playing a move in Edge Geography

Figure 4.3: Playing a move in Edge Geography on an undire
ted graph

A Geography position is denoted (G,u) where G is the graph, or the

dire
ted graph, on whi
h the game is played, and u is the vertex of G where

the token is.

Li
htenstein and Sipser [22℄ proved that �nding the normal out
ome of

a Vertex Geography position on a dire
ted graph is pspa
e-
omplete.

S
haefer proved that �nding the normal out
ome of an Edge Geogra-

phy position on a dire
ted graph is pspa
e-
omplete. On the other hand,

Fraenkel, S
heinerman and Ullman [18℄ gave a polynomial algorithm for �nd-

ing the normal out
ome of aVertex Geography position on an undire
ted

graph, and they also proved that �nding the normal out
ome of an Edge

Geography position on an undire
ted graph is pspa
e-
omplete.

We here look at these games under the misère 
onvention, and show

the problem is pspa
e-
omplete both on dire
ted graphs and on undire
ted

graphs, for both Vertex Geography and Edge Geography.

First note that all these problems are in pspa
e as the length of a game

of Vertex Geography is bounded by the number of its verti
es, and the

length of a game of Edge Geography is bounded by the number of its
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edges.

We start with Vertex Geography on dire
ted graphs, where the re-

du
tion is quite natural, we just add a losing move to every position of the

previous graph, move that the players will avoid until it be
omes the only

available move, that is when the original game would have ended.

Theorem 4.8 Finding the misère out
ome of a Vertex Geography po-

sition on a dire
ted graph is pspa
e-
omplete.

Proof. We redu
e the problem from normal Vertex Geography on di-

re
ted graphs.

Let G be a dire
ted graph. Let G′
be the dire
ted graph with vertex set

V (G′) = {u1, u2|u ∈ V (G)}

and ar
 set

A(G′) = {(u1, v1)|(u, v) ∈ A(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where ea
h vertex of G gets one extra out-neighbour that

was not originally in the graph. We 
laim that the normal out
ome of (G, v)
is the same as the misère out
ome of (G′, v1) and show it by indu
tion on

the number of verti
es in G.
If V (G) = {v}, then both (G, v) and (G′, v1) are P-positions. Assume

now |V (G)| > 2. Assume �rst (G, v) is an N -position. There is a winning

move in (G, v) to (G̃, u). We show that moving from (G′, v1) to (Ĝ′, u1) is a
winning move. We have V (Ĝ′) = V (G̃′) ∪ {v2} and A(Ĝ′) = A(G̃′). As the
vertex v2 is dis
onne
ted from the vertex u1 in Ĝ′

, the games (Ĝ′, u1) and
(G̃′, u1) share the same game tree, and they both have out
ome P by indu
-

tion. Hen
e (G′, v1) has out
ome N . Now assume (G, v) is a P-position.
For the same reason as above, moving from (G′, v1) to any (Ĝ′, u1) would
leave a game whose misère out
ome is the same as the normal out
ome of a

game obtained after playing a move in (G, v), whi
h is N . The only other

available move is from (G′, v1) to (Ĝ′, v2), whi
h is a losing move as it ends

the game. Hen
e (G′, v1) has out
ome P. �

The proof in [22℄ a
tually works even if we only 
onsider planar bipartite

dire
ted graphs with maximum degree 3. As our redu
tion keeps the pla-

narity and the bipartition, only adds verti
es of degree 1 and in
reases the

degree of verti
es by 1, we get the following 
orollary.

Corollary 4.9 Finding the misère out
ome of a Vertex Geography po-

sition on a planar bipartite dire
ted graph with maximum degree 4 is pspa
e-

omplete.

For undire
ted graphs, adding a new neighbour to ea
h vertex would work

the same, but the normal version of Vertex Geography on undire
ted
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u uv1

uv2

uv3

uv4

uv5

uv6 uv7

uv8

v

Figure 4.4: The ar
 gadget

graph is solvable in polynomial time, so we redu
e from dire
ted graphs, and

repla
e ea
h ar
 by an undire
ted gadget. That gadget would need to a
t

like an ar
, that is a player who would want to take it in the wrong dire
tion

would lose the game, as well as a player who would want to take it when the

vertex at the other end has already been played, and we want to for
e that

a player who takes it is the player who moves the token to the other end, so

that it would be the other player's turn when the token rea
h the end vertex

of the ar
 gadget, as in the original game.

Theorem 4.10 Finding the misère out
ome of a Vertex Geography po-

sition on an undire
ted graph is pspa
e-
omplete.

Proof. We redu
e the problem from normal Vertex Geography on di-

re
ted graphs.

We introdu
e a gadget that will repla
e any ar
 (u, v) of the original

dire
ted graph, and add a neighbour to ea
h vertex to have an undire
ted

graph whose misère out
ome is the normal out
ome of the original dire
ted

graph.

Let G be a dire
ted graph. Let G′
be the undire
ted graph with vertex

set

V (G′) = {u, u′|u ∈ V (G)}
∪ {uvi|(u, v) ∈ A(G), i ∈ J1; 8K}

and edge set

E(G′) = {(u, uv1), (uv1, uv2), (uv1, uv3), (uv1, uv6), (uv2, uv4), (uv3, uv5),
(uv3, uv6), (uv4, uv5), (uv4, uv6), (uv5, uv6), (uv6, uv7), (uv7, uv8),
(uv7, v)|(u, v) ∈ A(G)}

∪ {(u, u′)|u ∈ V (G)}

that is the graph where every ar
 (u, v) of G has been repla
ed by the gadget

of Figure 4.4, identifying both u verti
es and both v verti
es, and ea
h vertex
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of G gets one extra neighbour that was not originally in the graph. We


laim that the normal out
ome of (G,u) is the same as the misère out
ome

of (G′, u) and show it by indu
tion on the number of verti
es in G.
If V (G) = u, then (G,u) is a normal P-position. In (G′, u) the �rst

player 
an only move to (Ĝ′, u′) where the se
ond player wins as he 
annot

move.

Now assume |V (G)| > 2.
We �rst show that no player wants to move the token from v to any wv7,

whether w has been played or not. We will only prove it for moving the

token from v to some wv7 where w is still in the game, as the other 
ase is

similar. First note that if w is removed from the game in the sequen
e of

move following that �rst move, as v is already removed, all verti
es of the

form wvi would be dis
onne
ted from the token, and therefore unrea
hable.

Hen
e whether the move from wv1 to w is winning does not depend on the

set of verti
es deleted in that sequen
e, and it is possible to argue the two


ases. Assume the �rst player moved the token from v to any wv7. Then

the se
ond player 
an move the token to wv6. From there, the �rst player

has four 
hoi
es. If she goes to wv1, the se
ond player answers to wv2, then
the rest of the game is for
ed and the se
ond player wins. If she goes to

wv4, he answers to wv2 where she 
an only move to wv1, and let him go to

wv3 where she is for
ed to play to wv5 and lose. The 
ase where she goes to

wv5 is similar. In the 
ase where she goes to wv3, we argue two 
ases: if the

move from wv1 to w is winning, he answers to wv5, where all is for
ed until

he gets the move to w; if that move is losing, he answers to wv1, from where

she 
an either go to w, whi
h is a losing move by assumption, or go to wv2
where every move is for
ed until she loses.

We now show that no player wants to move the token from v to any vw1

where w has already been played. Assume the �rst player just played that

move. Then the se
ond player 
an move the token to vw3. From there, the

�rst player have two 
hoi
es. If she plays to vw6, he answers to vw4, where

she 
an only end the game and lose. If she plays to vw5, he answers to vw4,

where the move to vw2 is immediately losing, and the move to vw6 for
es

the token to go to vw7 and then vw8 where she loses.

Assume �rst that (G,u) is an N -position. There is a winning move in

(G,u) to some (G̃, v). We show that moving the token from u to uv1 in G′
is

a winning move for the �rst player. From there, the se
ond player has three


hoi
es. If he moves the token to uv6, the �rst player answers to uv3, then
the rest of the game is for
ed and the �rst player wins. If he moves the token

to uv2, the �rst player answers to uv4, where the se
ond player again has two


hoi
es: either he goes to uv6, she answers to uv5 where he is for
ed to lose

by going to uv3; or he goes to uv5, she answers to uv6 where the move to uv3
is immediately losing and the move to uv7 is answered to a game (Ĝ′, v). As
u′ and all verti
es of the form uvi are either played or dis
onne
ted from v
in Ĝ′

, the only di�eren
es in the possible moves in (followers of) the games
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(Ĝ′, v) and (G̃′, v) are moves from a vertex w to wu1 or to wu7, so they both

have out
ome P by indu
tion. The 
ase where he 
hooses to move the token

to uv3 is similar. Hen
e (G′, u) is an N -position.

Now assume (G,u) is a P-position. Then any (G̃, v) that 
an be obtained

after a move from (G,u) is an N -position. Moving the token to u′ in G′
is

immediately losing, so we may assume the �rst player moves it to some uv1,
where the se
ond player answers to uv3. From there the �rst player has two


hoi
es. If she goes to uv6, the se
ond player answers by going to uv4, where
both available moves are immediately losing. If she goes to uv5, he answers
to uv4, where the move to uv2 is immediately losing, and the move to uv6 is
answered to uv7, where again the move to uv8 is immediately losing, so we

may assume he moves the token to v. As u′ and all verti
es of the form uvi
are either played or dis
onne
ted from v in Ĝ′

, the only di�eren
es in the

possible moves in (followers of) the games (Ĝ′, v) and (G̃′, v) are moves from

a vertex w to wu1 or to wu7, so they both have out
ome N by indu
tion.

Hen
e (G′, u) is a P-position. �

Again, using the fa
t that the proof in [22℄ a
tually works even if we

only 
onsider planar bipartite dire
ted graphs with maximum degree 3, as
our redu
tion keeps the planarity sin
e the gadget is planar with the verti
es

we link to the rest of the graph being on the same fa
e, only adds verti
es

of degree at most 5 and in
reases the degree of verti
es by 1, we get the

following 
orollary.

Corollary 4.11 Finding the misère out
ome of a Vertex Geography po-

sition on a planar undire
ted graph with degree at most 5 is pspa
e-
omplete.

Though misère play is generally 
onsidered harder to solve than normal

play, the feature that makes it hard is the fa
t that disjun
tive sums do not

behave as ni
ely as in normal play, and Geography is a game that does

not split into sums. Hen
e the above result appears a bit surprising as it was

not expe
ted.

We now look at Edge Geography where the redu
tions are very similar

to the one for Vertex Geography on dire
ted graphs.

We start with the undire
ted version.

Theorem 4.12 Finding the misère out
ome of an Edge Geography po-

sition on an undire
ted graph is pspa
e-
omplete.

Proof. We redu
e the problem from normal Edge Geography on undi-

re
ted graphs.

Let G be an undire
ted graph. Let G′
be the undire
ted graph with

vertex set

V (G′) = {u1, u2|u ∈ V (G)}
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and edge set

E(G′) = {(u1, v1)|(u, v) ∈ E(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where ea
h vertex of G gets one extra neighbour that was

not originally in the graph. We 
laim that the normal out
ome of (G, v) is
the same as the misère out
ome of (G′, v1) and show it by indu
tion on the

number of verti
es in G. The proof is similar to the proof of Theorem 4.8 �

We now look at Edge Geography on dire
ted graphs.

Theorem 4.13 Finding the misère out
ome of an Edge Geography po-

sition on a dire
ted graph is pspa
e-
omplete.

Proof. We redu
e the problem from normal Edge Geography on dire
ted

graphs.

Let G be a dire
ted graph. Let G′
be the dire
ted graph with vertex set

V (G′) = {u1, u2|u ∈ V (G)}

and ar
 set

A(G′) = {(u1, v1)|(u, v) ∈ A(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where ea
h vertex of G gets one extra out-neighbour that

was not originally in the graph. We 
laim that the normal out
ome of (G, v)
is the same as the misère out
ome of (G′, v1) and show it by indu
tion on the

number of verti
es in G. The proof is similar to the proof of Theorem 4.8 �

4.1.2 VertexNim

In VertexNim, the misère version seems to behave like the normal version.

The results we obtained in Se
tion 2.1 are extensible to misère games.

First we look atAdja
ent Nim, that isVertexNim on a 
ir
uit. Again,

we only 
onsider positions with no 1 o

urring as initial positions. We get a

result similar to the one in the normal version.

Theorem 4.14 Let (Cn, w, v1), n > 3 be an instan
e of Vertexnim with

Cn the 
ir
uit of length n and w : V → N>1.

• If n is odd, then (Cn, w, v1) is an N -position.

• If n is even, then (Cn, w, v1) is an N -position if and only if the smallest

index of a vertex of minimum weight, that is min{argmin
16i6n

w(vi)}, is

even.

Proof.
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• Case (1) If n is odd, then the �rst player 
an apply the following

strategy to win: �rst, she plays w(v1) → 1. Then for all 1 6 i < n−1
2 :

if the se
ond player empties v2i, then the �rst player also empties

the following vertex v2i+1. Otherwise, she plays w(v2i+1) → 1. This

time, the strategy is not di�erent for the last two verti
es of Cn. As

w(v1) = 1, the se
ond player is now for
ed to empty v1. Sin
e an

odd number of verti
es was deleted sin
e then, we now have an even


ir
uit to play on. It now su�
es for the �rst player to empty all the

verti
es on the se
ond run. Indeed, the se
ond player is also for
ed to

set ea
h weight to 0 sin
e he has to play on verti
es satisfying w = 1.
Sin
e the 
ir
uit is even, the �rst player is guaranteed to leave the

last move to the se
ond player.

• Case (2) If n is even, we 
laim that who must play the �rst vertex

of minimum weight will lose the game. The winning strategy of the

other player 
onsists in de
reasing by 1 the weight of ea
h vertex at

their turn. Assume that min{argmin
16i6n

w(vi)} is odd. If the strategy of

the se
ond player always 
onsists in moving w(vi) → w(vi) − 1, then
the �rst player will be the �rst to set a weight to 0 or 1. If she sets the
weight of a vertex to 0, then the se
ond player now fa
es an instan
e

(C ′
n−1, w

′) with w′ : V ′ → N>1, whi
h is winning a

ording to the

previous item. If she sets the weight of a vertex to 1, then the se
ond

player will empty the following vertex, leaving to the �rst player a

position (C ′
n−1 = (v′1, v

′
2, . . . , v

′
N−1), w

′) with w′ : V ′ → N>1 ex
ept on

w′(v′n−1) = 1. This position 
orresponds to the one of the previous

item after the �rst move, and is thus losing. A similar argument shows

that the �rst player has a winning strategy if min{argmin
16i6n

w(vi)} is

even.

�

The reader would have seen the similarity between the proofs of normal

version and misère version. The following results are even more similar in

their proof, this is why we do not re
all the proofs in their entirety.

We now state how to �nd the misère out
ome of a VertexNim position

on any undire
ted graph.

Theorem 4.15 Let (G,w, u) be an instan
e of VertexNim, where G is an

undire
ted graph. De
iding whether the misère out
ome of (G,w, u) is P or

N 
an be done in O(|V (G)||E(G)|) time.

Proof. If all verti
es have weight 1, then (G,w, u) is an N -position if and

only if |V (G)| is even sin
e it redu
es to the misère version of �She loves

move, she loves me not�. Otherwise, we 
an use the same proof as the one
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of Theorem 2.9 to see that (G,w, u) is N in the misère version if and only if

it is N in the normal version. �

Finally, we state how to �nd the misère out
ome of a VertexNim posi-

tion on any dire
ted graph with a self loop on ea
h vertex.

Theorem 4.16 Let (G,w, u) be an instan
e of VertexNim, where G is

strongly 
onne
ted, with a loop on ea
h vertex. De
iding whether the misère

out
ome of (G,w, u) is P or N 
an be done in time O(|V (G)||E(G)|).

Proof. If all verti
es have weight 1, then (G,w, u) is an N position if and

only if |V (G)| is even sin
e it redu
es to the misère version of �She loves

move, she loves me not�. Otherwise, we 
an use the same proof as the one

of Theorem 2.7 to see that (G,w, u) is N in the misère version if and only if

it is N in the normal version. �

4.1.3 Timber

In Timber, going to misère is already harder. Though we 
an still redu
e

the game to an oriented forest, whi
h happens to be the same forest as for

normal play, we 
an only give a polynomial algorithm for �nding the misère

out
ome of an oriented path.

Theorem 4.17 Let G be a dire
ted graph seen as a Timber position su
h

that there exist a set S of verti
es that forms a 2-edge-
onne
ted 
omponent

of G, and x, y two verti
es not belonging to G. Let G′
be the dire
ted graph

with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and ar
 set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

Then G =− G′
.

Proof. The proof is identi
al to the proof of Theorem 2.14 as we never used

the fa
t we were under the normal 
onvention. �

As in normal play, we get the following 
orollary.

Corollary 4.18 For any dire
ted graph G, there exists an oriented forest FG

su
h that G =+ FG and G =− FG. Moreover, FG is 
omputable in quadrati


time.

The following proposition remains true as well for the same reason.
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Proposition 4.19 Let T be an oriented tree su
h that there exist three sets

of verti
es {ui}06i6k, {vi}06i6k, {wi}06i6ℓ ⊂ V (G) su
h that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ) ⊂ A(G),

2. (uk, w0), (vk, wℓ) ∈ A(G),

3. u0 and v0 have in-degree 0 and out-degree 1,

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1.

Let T ′
be the oriented tree with vertex set

V (T ′) = V (T ) \ {vi}06i6k

and ar
 set

A(T ′) = A(T ) \ ({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}).

Then T =− T ′
.

Proof. The proof is identi
al to the proof of Proposition 2.17 as we never

used the fa
t we were under the normal 
onvention. �

On paths, we 
an use the peak representation as de�ned in Se
tion 2.2,

but we 
an also 
ode the problem with a word: L would represent an ar


dire
ted leftward while R would represent an ar
 dire
ted rightward. As in

Se
tions 2.2 and 3.1, we 
an see it as a row of dominoes that would topple

everything in one dire
tion when 
hosen, where 
hosen dominoes 
an only

be toppled fa
e up. The position is read from left to right.

Given the alphabet {L,R}, for a word w, let |w|L be the num-

ber of L's in w, |w|R the number of R's in w and w[i,j] the subword

wiwi+1 · · ·wj . Let WP be the set of words w su
h that for any i,
|w[0,i]|L > |w[0,i]|R and |w|L = |w|R; and SWP be the set of words

w su
h that w ∈ WP and ∀w1, w2 ∈ WP , w 6= w1LRw2. We de�ne

X = (SWP\{∅}) ∪ {Rw | w ∈ SWP} ∪ {wL | w ∈ SWP} ∪ {RwL | w ∈ SWP}.

We note w̃ the word obtained from w after removing the �rst 
hara
ter if it

is an R and the last one if it is an L.

The reader would have re
ognised WP as the set of normal P-positions
of Timber on a path. We now prove that misère P-positions of Timber on

a path are those belonging to X, that is all words w su
h that w̃ ∈ SWP
but the empty word.

Theorem 4.20 In misère play, the P-positions of Timber on a path are

exa
tly those whi
h 
orrespond to words of X.
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Proof. Let w ∈ X be a position. Assume w ∈ (SWP\{∅}). From the

normal play analysis, we know that the �rst player 
annot move to a position

in SWP ⊂ WP . Assume the �rst player 
an move to a position Rw0 with

w0 ∈ SWP . Then it follows that w = w1LRw0 for some w1. As w,w0 ∈ WP
then w1 ∈ WP , whi
h is not possible sin
e w ∈ SWP . Similarly, we 
an

prove the �rst player has no move to a position of the form w0L or Rw0L
with w0 ∈ SWP . Similarly, we 
an prove the �rst player has no move to a

position in X from a position in X.

Let w /∈ X ∪ {∅}. Assume w ∈ WP . Then there exist w1, w2 ∈ WP
su
h that w = w1LRw2, and we 
an 
hoose them su
h that w2 ∈ SWP .
From w, the �rst player 
an move to Rw2 ∈ X. Similarly, we 
an

prove the �rst player has a move to a position in X from a position in

({Rw | w ∈ WP} ∪ {wL | w ∈ WP} ∪ {RwL | w ∈ WP})\X .

Now assume w[0,1] = RR. The �rst player 
an move to R ∈ X.

Now assume w is none of the above forms. Thus w̃ starts with an L and

ends with an R, and is not in WP , so the �rst player has a move from w̃
to a position w0 ∈ WP\{∅}. Without loss of generality, we 
an assume it is

by toppling a domino leftward. If w0 ∈ SWP , the same move from w leaves

the position w0 ∈ X or w0L ∈ X. Otherwise, there exist w1, w2 ∈ WP su
h

that w0 = w1LRw2 and we 
an 
hoose w2 ∈ SWP . The �rst player 
an

then move from w to Rw2 ∈ X or Rw2L ∈ X. �

SWP is the set of Timber positions whose peak representations are Dy
k

paths without peaks at height 1. The number of su
h Dy
k paths of length

2n is the nth
Fine number Fn = 1

2

∑−2
i=0(−1)icn−i

(
1
2

)i
, where ck = (2k)!

k!(k+1)!

is the kth Catalan number [31℄. This gives us the number of Timber misère

P-positions on paths of length n: there are no Timber misère P-positions

on paths of length 0; there are 2Fn =
∑−2

i=0(−1)icn−i

(
1
2

)i
Timber misère

P-positions on paths of length 2n+ 1; there are Fn + Fn−1 Timber misère

P-positions on paths of length 2n.

That last number is also the number of Dy
k paths of length 2n with no

peak at height 2 before the �rst time the path returns at height 0. We 
an

de�ne a bije
tion between Timber misère P-positions on paths of length 2n
and Dy
k paths of length 2n with no peak at height 2 before the �rst time

the path returns at height 0 as follows (using their word representation): if

the word 
an be written w1Lw2R with both w1 and w2 representing Dy
k

paths (note that w1 might be empty, but not w2), its image is Lw1Rw2.

otherwise, the word 
an be written RwL with w representing a Dy
k path,

and its image is LwR. Figure 4.5 gives examples of the bije
tion, using the

peak representation. The Timber misère P-positions are on the left, and at

their right are their images through the bije
tion.
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→

→

→

Figure 4.5: Timber misère P-positions and their images, Dy
k paths with no

peak at height 2 before the �rst return to 0

4.1.4 Timbush

For Timbush, we still redu
e the dire
ted graph to an oriented forest, but

our knowledge stops there. Even on an oriented path, �nding the misère

out
ome seems 
hallenging.

Theorem 4.21 Let G be a dire
ted graph seen as a Timbush position su
h

that there exist a set S of verti
es that forms a 2-edge-
onne
ted 
omponent

of G, and x, y two verti
es not belonging to G. Let G′
be the dire
ted graph

with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and ar
 set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)},

keeping the same 
olours, where the 
olour of (y, x) is grey if the ar
s in

S yields di�erent 
olours, and of the unique 
olour of ar
s in S otherwise.

Then G =− G′
.

Proof. The proof is identi
al to the proof of Theorem 3.4 as we never used

the fa
t we were under the normal 
onvention. �

As in normal play, we get the following 
orollary.

Corollary 4.22 For any dire
ted graph G, there exists an oriented forest

FG su
h that G =+ FG and G =− FG and FG is 
omputable in quadrati


time.

The following proposition is true as well, for the same reason.
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Proposition 4.23 Let T be an oriented tree su
h that there exist three sets

of verti
es {ui}06i6k,{vi}06i6k,{wi}06i6ℓ ⊂ V (G) su
h that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ ⊂ A(G),

2. {(uk, w0), (vk, wℓ)}) ⊂ A(G),

3. u0 and v0 have in-degree 0 and out-degree 1,

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1,

5. for all 1 6 i 6 k, (uk−1, uk) and (vk−1, vk) have the same 
olour.

6. (uk, w0) and (vk, wℓ) have the same 
olour.

Let T ′
be the oriented tree with vertex set

V (T ′) = V (T )\{vi}06i6k

and ar
 set

A(T ′) = A(T )\({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}),

keeping the same 
olours, apart from (uk, w0) whi
h be
omes grey when

(uk, w0) and (vk, wℓ) had di�erent 
olours in T . Then T =− T ′
.

Proof. The proof is identi
al to the proof of Proposition 3.7 as we never

used the fa
t we were under the normal 
onvention. �

4.1.5 Toppling Dominoes

In Toppling Dominoes, the misère out
ome of a single row is easy to

determine, but �nding equivalen
e 
lasses in the general 
ase has eluded us

for now.

Proposition 4.24 The misère out
ome of a Toppling Dominoes position

on a single row is determined by its end dominoes and the dominoes right

next to them. For any string x,

• L,ERE,LxL,ERxL,LxRE,ERxRE ∈ R−
,

• R,ELE,RxR,ELxR,RxLE,ELxLE ∈ L−
,

• E ∈ P−
,

• ∅, EL, LE, ER, RE, LxR, RxL, EEx, xEE, ELxL, LxLE, ERxR,
RxRE, ELxRE, ERxLE ∈ N .

In parti
ular, we note that there is only one Toppling Dominoes po-

sition on a single row that is a misère P-position.
Nevertheless, when allowing a game on several rows, the set of Toppling

dominoes misère P-positions is in�nite, as all Nim positions are equal to a

Toppling dominoes position using only grey dominoes.
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However, if we restri
t ourselves to bla
k and white dominoes (ex
luding

grey dominoes), we prove that no position is a misère P-position, no mat-

ter the number of rows of the position. We a
tually fully 
hara
terise the

out
ome of any set of rows of bla
k and white dominoes.

Before stating the theorem, we de�ne a pair of fun
tions on sets of rows

of dominoes. For any set of rows G of bla
k and white dominoes, we de�ne

ltd(G) the number of rows of dominoes in G that start and end with a bla
k

domino. Similarly, we de�ne rtd(G) the number of rows of dominoes in G
that start and end with a white domino.

Theorem 4.25 Let G be a set of rows of bla
k and white dominoes. Then

o−(G) =





N−
if ltd(G) = rtd(G)

L−
if ltd(G) < rtd(G)

R−
if ltd(G) > rtd(G)

Proof. We prove the result by indu
tion on the number of dominoes in G.
If there is no domino, the out
ome is trivially N .

Assume now there is at least one domino. Assume �rst ltd(G) = rtd(G).
If ltd(G) > 0, Left 
an play a domino on the edge of a row that starts and ends

with a bla
k domino to remove it from the game, moving to a positionG′
su
h

that ltd(G
′) = ltd(G)−1 = rtd(G)−1 = rtd(G

′)−1, whi
h is an L-position by

indu
tion. Otherwise, we may assume without loss of generality that there is

a row that starts with a bla
k domino and ends with a white domino. Left 
an


hoose the rightmost bla
k domino of that row and topple it leftward, moving

to a position G′
su
h that rtd(G

′) = rtd(G) + 1 = ltd(G) + 1 = ltd(G
′) + 1,

whi
h is an L-position by indu
tion. A similar argument on Right moves

shows that G is an N -position. Assume now ltd(G) < rtd(G). Then

there exists a row that starts and ends with a white domino. If that

row 
ontains a bla
k domino, Left 
an 
hoose the rightmost bla
k domino

of that row and topple it leftward, moving to a position G′
su
h that

rtd(G
′) = rtd(G) > ltd(G) = ltd(G

′), whi
h is an L-position by indu
tion.

Otherwise, that is if all rows that start and end with a white domino 
on-

tain no bla
k domino, either she has no move and wins, or she 
an 
hoose a

bla
k domino at an end of a row and topple it toward the other ends, mov-

ing to a position G′
su
h that rtd(G

′) = rtd(G) > ltd(G) > ltd(G
′), whi
h is

an L-position by indu
tion. Whatever Right does, he 
an only 
hange the

status of one row, and only 
hange one of the end dominoes of this row or

empty it, moving to a position G′
where rtd(G

′)− ltd(G
′) = rtd(G)− l(tdG)

or rtd(G
′)− ltd(G

′) = rtd(G)− ltd(G) − 1, whi
h is either an L-position or

an N -position by indu
tion. Hen
e G is an L-position.
The 
ase when ltd(G) > rtd(G) is similar. �

This implies that any row of bla
k and white dominoes starting and end-

ing with a bla
k domino is equivalent to a single bla
k domino modulo the
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universe of LR-Toppling Dominoes positions. Also any row of bla
k and

white dominoes starting and ending with a white domino is equivalent to a

single white domino modulo the universe of LR-Toppling Dominoes po-

sitions and any row of bla
k and white dominoes starting and ending with

dominoes of di�erent 
olours is equivalent to an empty row modulo the uni-

verse of LR-Toppling Dominoes positions. Note that this equivalen
e is

not true in the universe of all Toppling Dominoes positions. For example,

the position LL and L are not equivalent in this universe: L + E + E is a

misère P-position, while LL+ E + E is a misère L-position.
This equivalen
e allows us to 
ompletely des
ribe the misère monoid of

LR-Toppling Dominoes positions, whi
h we present in Theorem 4.26.

Theorem 4.26 Under the mapping

G 7→ αltd(G)−rtd(G),

the misère monoid of LR-Toppling Dominoes positions is

MZ = 〈1, α, α−1 | α · α−1 = 1〉 ∼= (Z,+)

with out
ome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}

and total ordering

αn > αm ⇔ n < m.

This result is quite surprising as in general, the misère version of a game

is harder than its normal version, and LR-Toppling Dominoes has not

been solved under normal 
onvention. From what we saw in Se
tion 3.2 and

results from [17℄, the stru
ture is ri
her in normal play than in misère play.

4.1.6 Col

Noti
e �rst that all Col positions are dead-ending.

On Col, we give the out
ome of some 
lasses of graphs, and even equiv-

alen
e 
lass modulo the dead-ending universe for some of them.

We use the same notation as in Se
tion 3.3.

First, we present some features parti
ipating in explaining why misère

play seems harder than normal play for the game of Col.

Adding a bla
k vertex or reserving a vertex for Left would seem to be an

advantage for Right in misère play. Unfortunately, that intuition is false:

o−(o+ o) = N ; o−(oBo) = L

o−(ooo) = N ; o−(oBo) = L
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A theorem su
h as Theorem 3.51 
annot be stated: the se
ond player

would never use su
h strategy as they would be sure to lose this way, and

the �rst player 
annot for
e su
h a 
hoi
e.

Now we are ba
k with �nding misère out
omes of positions.

We start with paths. The following lemma gives the equivalen
e 
lass

modulo the dead-ending universe of paths whose end verti
es are bla
k or

white and all internal verti
es are grey.

Lemma 4.27

1. for any non-negative integer n, BonB ≡−
E B.

2. for any non-negative integer n, BonW ≡−
E ∅.

Proof. We show simultaneously that G+B and G+BonB have the same

out
ome, as well as G and G+BonW , by indu
tion on n ∈ N and the order

of G ∈ E .
By playing on any vertex of BonB, Left goes to a game whi
h is equivalent

to ∅ modulo E , either by indu
tion or be
ause it is ∅. By playing on any

vertex of BonB, Right goes to a game whi
h is equivalent to B +B modulo

E by indu
tion or be
ause it is B + B. By playing on any vertex of BonW ,

Left goes to a game whi
h is equivalent to W modulo E by indu
tion or

be
ause it is W . By playing on any vertex of BonW , Right goes to a game

whi
h is equivalent to B modulo E by indu
tion or be
ause it is B.

Let G be a dead-ending game su
h that Left wins G + B playing �rst (or

se
ond). On G + BonB, Left 
an follow her G + B strategy, unless Right

plays from some G′ + BonB to G′ + (BonB)R or the strategy re
ommends

her to play from some G′+B to G′
. In the former 
ase, Right has just moved

BonB to a game equivalent to B + B modulo E and she 
an put the game

on G′ + B whi
h she wins a priori. In the latter 
ase, she 
an move from

G′ +BonB to a game equivalent to G′
modulo E and 
ontinue as if she had

just moved from B to ∅.
Let G be a dead-ending game su
h that Right wins G + B playing �rst (or

se
ond). On G + BonB, Right 
an follow his G + B strategy, unless Left

plays from some G′+BonB to G′+(BonB)L or he has no more move. In the

former 
ase, Left has just moved BonB to a game equivalent to ∅ modulo E
and he 
an assume she had just moved from B to ∅. In the latter 
ase, he


an move from G′ + BonB to a game equivalent to G′ + B + B modulo E
where he has no move and wins as he will never get any.

Hen
e, BonB ≡−
E B.

Let G be a dead-ending game su
h that Left wins G playing �rst (or se
ond).

On G+BonW , Left 
an follow her G strategy, unless Right plays from some

G′ +BonW to G′ + (BonW )R or she has no more move. In the former 
ase,

Right has just moved BonW to a game equivalent to B modulo E and she


an put the game on G′
whi
h she wins a priori. In the latter 
ase, she 
an

move from G′ +BonW to a game equivalent to G′ +W modulo E where he
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has no move and wins as she will never get any.

A similar argument would show that when White has a winning strategy on

G, he has one on G+BonW .

Hen
e, BonW ≡−
E ∅. �

This implies the following result on 
y
les, where all moves are equivalent,

leading to a position we just analysed.

Theorem 4.28 For any integer n greater than or equal to 3, we have

Cn ≡−
E ∅.

Proof. The only Left option of Cn is Won−3W , whi
h is equivalent to W
modulo E and the only Right option of Cn is Bon−3B, whi
h is equivalent

to B modulo E . Hen
e Cn is equivalent to {W |B} = BW modulo E , and as

BW is equivalent to ∅ modulo E , Cn is as well. �

We now look at sums of paths as it gives us the misère out
ome of any

grey path, and helps �nd the misère out
ome of bigger positions.

Lemma 4.29

1. For any non-negative integer l, any non-negative integers ni (i ∈ J1; lK),
we have Σl

i=1Woni ∈ N− ∪ L−
, that is Left has a winning strategy if she

plays �rst.

2. For any non-negative integer l, any non-negative integers ni (i ∈ J1; lK),
we have (W +Σl

i=1Woni) ∈ L−
, that is Left has a winning strategy who-

ever plays �rst.

Proof. We show the results simultaneously by indu
tion on n = Σl
i=1ni.

If n = 0, Left has no move on either Σl
i=1Woni

or (W +Σl
i=1Woni), and as

Right has at least one move on (W +Σl
i=1Woni), the results hold.

Assume n > 1. Without loss of generality, we may assume nl > 1. If Left

plays on the non-reserved leaf of Wonl
in Σl

i=1Woni
, it be
omes equivalent

to W+Σl−1
i=1Woni

modulo E , where Left has a winning strategy by indu
tion.
Hen
e Left has a winning strategy on Σl

i=1Woni
if she plays �rst.

We noti
e (W + Σl
i=1Woni) = Σl

i=0Woni
with n0 = 0, so if Left is the

�rst player on (W + Σl
i=1Woni), then she has a winning strategy from 1.

Assume Right is the �rst player on (W +Σl
i=1Woni). If Right plays on W ,

then the game be
omes (Σl
i=1Woni) where we just saw Left has a winning

strategy playing �rst. Otherwise, we may assume Right plays on a vertex

of Wonl
without loss of generality. If this vertex is the non-reserved leaf,

then the game be
omes equivalent to (W +Σl−1
i=1Woni) modulo E where Left

has a winning strategy by indu
tion. Otherwise, Left 
an answer on this

leaf, leaving a game equivalent to (W + Σl−1
i=1Woni) modulo E where she

has a winning strategy by indu
tion. Hen
e Left has a winning strategy on

(W +Σl
i=1Woni). �

As expe
ted, we 
an use this result to �nd the out
ome of any grey path.
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Theorem 4.30 For any integer n greater than or equal to 2, we have

on ∈ N−
that is the �rst player has a winning strategy.

Proof. o2 and BW have the same options, so are equivalent modulo E ,
hen
e o2 is equivalent to ∅ modulo E .
Assume n > 3. Without loss of generality, we 
an assume that Left is the

�rst player. By playing on a vertex next to a leaf, Left leaves the game as

W +Won−3
, where she has a winning strategy by Lemma 4.29. Hen
e the

�rst player has a winning strategy on on. �

We now �nd the out
ome of any tree with at most one vertex having

degree at least 3. Before that, we need to �nd the out
ome of positions that

players might rea
h from these trees. We do not 
onsider all su
h positions

as we did in normal play, sin
e we only need to 
onsider positions that o

ur

under one player's winning strategy. We look again at sums of path, where

we re�ne the previous results. First, we add a path having exa
tly one

bla
k leaf and all other verti
es being grey to a sum of paths 
onsidered in

Lemma 4.29, assuming there are at least two single white verti
es.

Lemma 4.31 For any non-negative integer l, any non-negative integers ni

(i ∈ J1; l + 1K), we have (W +W +Bonl+1 +Σl
i=1Woni) ∈ L−

, that is Left

has a winning strategy whoever plays �rst.

Proof. We show the result by indu
tion on Σl+1
i=1ni. If Left is

the �rst player, she 
an play on the vertex reserved for her, leaving

(W +W +Wonl+1−1 +Σl
i=1Woni) where she has a winning strategy by

Lemma 4.29.

Assume now Right is the �rst player. If he plays on a W , then Left 
an play

on the vertex reserved for her, leaving (W +Wonl+1−1 + Σl
i=1Woni) where

she has a winning strategy by Lemma 4.29. If he plays on a vertex of Bonl+1
,

Left 
an play on the vertex reserved for her, leaving a game equivalent to

(W +W +Bon
′

l+1 +Σl
i=1Woni) modulo E , where she has a winning strategy

by indu
tion. Otherwise, we 
an assume without loss of generality that Right

plays on a vertex of Wonl
and that nl > 1. If it is on the non-reserved leaf,

the game be
omes equivalent to (W +W +Bonl+1 +Σl−1
i=1Woni) modulo E ,

where Left has a winning strategy by indu
tion. Otherwise, Left 
an answer

on this leaf, leaving a game equivalent to (W + W + Bonl+1 + Σl−1
i=1Woni)

modulo E , where she has a winning strategy by indu
tion.

Hen
e Left has a winning strategy on (W +W +Bonl+1 +Σl
i=1Woni). �

We are now ba
k to paths where exa
tly one leaf is white and all other

verti
es are grey, but we add the extra 
ondition that at least two of these

paths ea
h 
ontain at least three verti
es.

Lemma 4.32 For any non-negative integer k, any integer l greater than or

equal to 2, any integers ni greater than or equal to 2 (i ∈ J1; lK), we have

(Σk
j=1Wo+Σl

i=1Woni) ∈ L−
, that is Left has a winning strategy.
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Figure 4.6: The tree SiW6 Figure 4.7: The tree WSio3

Proof. We show the result by indu
tion on k. If Left is the �rst player,

then she has a winning strategy by Lemma 4.29.

Assume now Right is the �rst player. If he plays on the reserved ver-

tex of some Wo, Left 
an answer on the other vertex, leaving the game

as (Σk−1
j=1Wo + Σl

i=1Woni), where she has a winning strategy by indu
-

tion. If he plays on the non-reserved vertex of some Wo, the game be-


omes (Σk−1
j=1Wo + Σl

i=1Woni), where Left has a winning strategy by in-

du
tion. Otherwise, we 
an assume without loss of generality that Right

plays on a vertex of Wonl
. Left 
an answer on the vertex next to the

non-reserved end of Wonl−1
, leaving a graph equivalent modulo E to ei-

ther (W +W +Σk
j=1Wo+Σl−2

i=1Woni), where she has a winning strategy by

Lemma 4.29, or (W +W +Bom +Σk
j=1Wo+ Σl−2

i=1Woni) for some m 6 nl,

where she has a winning strategy by Lemma 4.31. Hen
e, Left has a winning

strategy on (Σk
j=1Wo+Σl

i=1Woni). �

We now introdu
e some more notation, that we use in the following:

(i) Sicn is the interse
tion graph of a star with n leaves, that is the tree

with exa
tly one vertex of degree at least 3 and n leaves all at distan
e

exa
tly 2 from this vertex, su
h that the 
enter, that is the vertex of

degree n, is labelled c and all other verti
es are labelled o.

(ii) c1Si
c2
n is the interse
tion graph of a star with n leaves, su
h that the


enter is labelled c2, to whi
h we add a vertex labelled c1 that we link

to the 
enter, and all other verti
es are labelled o.

Example 4.33 Figure 4.6 is the 
oloured graph SiW6 . All its verti
es are

grey but the 
enter, whi
h is white. Figure 4.7 is the 
oloured graph WSio3.
All its verti
es are grey but the leaf at distan
e 1 from the 
enter, whi
h is

white.

We now �nd the out
ome, nay the equivalent 
lass, of these positions we

just introdu
ed, starting with the equivalent 
lass of SiWn .
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Lemma 4.34 For any integer n greater than or equal to 2, we have

SiWn ≡−
E ∅.

Proof. Let G be a dead-ending game that Left wins playing �rst (or se
ond).

On G + SiWn , Left 
an follow her G strategy, unless Right plays from some

G′ + SiWn to G′ + (SiWn )R or she has no more moves. In the former 
ase,

there are three 
ases. If Right plays on a leaf of SiWn , Left 
an answer on

the other leaf if n = 2, leaving a game equivalent to G modulo E , where she
has a winning strategy if she plays se
ond, or on the vertex next to the one

Right just played on otherwise, leaving the game as G + SiWn−1 where she

has a winning strategy if she plays se
ond by indu
tion. If Right plays on a

non-leaf non-reserved vertex of SiWn , Left 
an answer on the leaf next to it,

leaving a game equivalent to G modulo E , where she has a winning strategy

if she plays se
ond. If Right plays on the reserved vertex of SiWn , Left 
an

answer on a leaf, leaving the graph as G + Σn−1
i=1 Bo >

−
E G where she has a

winning strategy if she plays se
ond. In the latter 
ase, she 
an move from

G′+SiWn to a game equivalent to G′+W modulo E by indu
tion by playing

on a non-leaf of SiWn , where she has no move and wins as she will never get

any.

Let G be a dead-ending game that Right wins playing �rst (or se
ond).

On G + SiWn , Right 
an follow his G strategy, unless Left plays from some

G′ + SiWn to G′ + (SiWn )L or he has no more moves. In the former 
ase,

there are two 
ases. If Left plays on a leaf of SiWn , Right 
an answer on the

vertex next to the one Left just played on, leaving a game equivalent to G′

modulo E , where he has a winning strategy if he plays se
ond. If Left plays

on a non-leaf non-reserved vertex of SiWn , Right 
an answer on a non-leaf

non-reserved vertex of SiWn , leaving a game equivalent to G modulo E , where
he has a winning strategy if he plays se
ond. In the latter 
ase, he 
an move

from G′ + SiWn to a game equivalent to G′ + B modulo E by playing on a

non-leaf of SiWn , where he has no move and wins as he will never get any.

Hen
e, SiWn ≡−
E ∅. �

We now give the out
ome of WSion, whi
h 
orresponds to a position

where Left would have played on a leaf of Sion+1.

Lemma 4.35 For any integer n greater than or equal to 2, we have

WSion ∈ L−
, that is Left has a winning strategy whoever plays �rst.

Proof. If Left is the �rst player, she 
an play on the 
entral vertex, leaving

the game as W +Σn
i=1Wo, where she has a winning strategy by Lemma 4.29.

Assume Right is the �rst player. If Right plays on the reserved vertex, the

game be
omes equivalent to ∅ modulo E , where Left has a winning strategy

if she plays �rst. If Right plays on the 
entral vertex, the game be
omes

Σn
i=1Bo >

−
E ∅, where Left has a winning strategy if she plays �rst. If Right

plays on any non-reserved leaf, Left 
an answer on the 
entral vertex, leaving
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the game as W+Σn−1
i=1 Wo, where she has a winning strategy by Lemma 4.29.

If Right plays on any other vertex, the game be
omes either equivalent to ∅
modulo E , where Left has a winning strategy if she plays �rst, or, if n = 2,
B+WBoo, where Left 
an play on the non-reserved non-leaf vertex, leaving

a game equivalent to W modulo E , where she has a winning strategy.

Hen
e, Left has a winning strategy on WSion. �

Now we sum these positions with paths and �nd the out
ome of su
h

sums, as they appear in the strategy we propose.

Lemma 4.36 For any integer n greater than or equal to 2 and any non-

negative integer k, we have (Wok +WSion) ∈ L−
, that is Left has a winning

strategy.

Proof. If Left is the �rst player, she 
an play on the 
entral vertex, leav-

ing the game as W +Wok +Σn
i=1Wo, where she has a winning strategy by

Lemma 4.29.

Assume now Right is the �rst player. If Right plays on the non-reserved

leaf on Wok, the game be
omes equivalent to WSion modulo E , where Left

has a winning strategy by Lemma 4.35. If Right plays on any other ver-

tex of Wok, Left 
an answer on that leaf, leaving a game equivalent to

WSion modulo E , where she has a winning strategy by Lemma 4.35. If

Right plays on the reserved vertex of WSion, the game be
omes equivalent

to Wok modulo E , where Left has a winning strategy if she plays �rst by

Lemma 4.29. If Right plays on the 
entral vertex ofWSion, the game be
omes

Wok +Σn
i=1Bo >

−
E Wok, where Left has a winning strategy if she plays �rst

by Lemma 4.29. If Right plays on any non-reserved leaf of WSion, Left 
an
answer on the 
entral vertex, leaving the game as W + Wok + Σn−1

i=1 Wo,
where she has a winning strategy by Lemma 4.29. If Right plays on any

other vertex, the game be
omes either equivalent to Wok modulo E , where
Left has a winning strategy if she plays �rst by Lemma 4.29, or, if n = 2,
Wok +B+WBoo, where Left 
an play on the non-reserved non-leaf vertex,

leaving a game equivalent to W +Wok modulo E , where she has a winning

strategy by Lemma 4.29.

Hen
e, Left has a winning strategy on (Wok +WSion). �

We now state the theorem on the out
ome of any grey subdivided star:

all these positions are misère N -positions.

Theorem 4.37 The �rst player has a winning strategy on any tree with

exa
tly one vertex having degree at least three, with all verti
es being 
oloured

grey.

Proof. We 
all v the vertex having degree l > 3, vi (1 6 i 6 l) the leaves

of the tree, ni (1 6 i 6 l) the distan
e between v and vi. Without loss of

generality, we 
an assume that Left is the �rst player.
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If at least one of the ni's is equal to 1, Left 
an play on v, leaving the graph

as Σl
i=1Woni−1

where she has a winning strategy by Lemma 4.29. Assume

su
h ni does not exist. If at least two of the ni's are greater than or equal

to 3, Left 
an play on v, leaving the graph as Σl
i=1Woni−1

where she has a

winning strategy by Lemma 4.32. If all ni's are equal to 2, Left 
an play on

a leaf, leaving the graph as WSiol−1, where she has a winning strategy by

Lemma 4.35. If all but one ni are equal to 2, Left 
an play on the non-leaf

vertex at distan
e 2 from v, leaving the graph as Womax16i6l(ni−3)+WSiol−1,

where she has a winning strategy by Lemma 4.36.

Hen
e, the �rst player has a winning strategy on any tree with exa
tly one

vertex having degree at least three. �

4.2 Canoni
al form of di
ot games

We now look at a more general universe of games, namely the universe of

di
ot games. Re
all that a game is said to be di
ot either if it is {·|·} or if it

has both Left and Right options and all these options are di
ot.

Example 4.38 Figure 4.8 gives three examples of games that are di
ot. The

�rst game has both a Left option and a Right option, and both these options

are 0, so are di
ot. One may re
ognise the game ∗ = {0|0} introdu
ed in the

introdu
tion. The se
ond game has two Left options and a Right option, and

all these options are 0 or ∗, so are di
ot. The third game has a Left option

and two Right options, and we 
an see all these options are di
ot. Figure 4.9

gives three examples of games that are not di
ot. The �rst game has a Left

option but no Right option. The se
ond game has both a Left option and a

Right option, but, though the Right option is di
ot, the Left option is not

di
ot as it has a Right option but no Left option. The third game has both

a Left option and a Right option, but none of these options is di
ot as they

are numbers in normal 
anoni
al form.

The universe of di
ots 
ontains all impartial games as well as many par-

tizan games su
h as all Clobber positions.

In normal play, di
ot games are 
alled all-small, be
ause if a player has

a signi�
ant advantage in a game, adding any di
ot position 
annot prevent

them from winning. In misère play, this is not the 
ase, as Siegel proved in

[38℄ that for any game G, there exists a di
ot game G′
su
h that G + G′

is

a misère P-position.

In this se
tion, we de�ne a redu
ed form for di
ot games, prove that it is

a
tually a 
anoni
al form, and 
ount the number of di
ot games in 
anoni
al

form born by day 3.
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Figure 4.8: Some di
ot positions

Figure 4.9: Some positions that are not di
ot

4.2.1 De�nitions and universal properties

We start by giving some more de�nitions and stating results valid for any

universe, but before that, we prove the 
losure of the di
ot universe under the

three aspe
ts we mentioned in the introdu
tion of this 
hapter: it is 
losed

under followers, 
losed under disjun
tive sum, and 
losed under 
onjugates.

Lemma 4.39 If G is di
ot then every follower of G is di
ot.

Proof. We prove the result by indu
tion on the birthday of G. If G = 0, G
is its only follower, and is di
ot, so the result holds. Let H be a follower of

G. If H is G or an option of G, then it follows from the de�nition of di
ots.

Otherwise, H is a follower of an option G′
of G, and as G′

is di
ot with a

birthday smaller than the birthday of G, it follows by indu
tion. �

Lemma 4.40 If G and H are di
ot then G+H is di
ot.

Proof. We prove the result by indu
tion on the birthdays of G and H. If

G = H = 0, then G + H = 0 is di
ot. Otherwise, we 
an assume without

loss of generality that G 6= 0. Then, from the de�nition of di
ot, we �nd Left

options of G+H, namely GL +H and possibly G+HL
. Similarly, we �nd

Right options of G + H, namely GR + H and possibly G + HR
. All these

options are di
ot by indu
tion. Hen
e G+H is di
ot. �

Lemma 4.41 If G is di
ot, then G is di
ot.

Proof. We prove the result by indu
tion on the birthday of G. If G = 0,
then G = 0 is di
ot. Otherwise, we �nd Left options of G, namely GR

.
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Similarly, we �nd Right options of G, namely GL
. All these options are

di
ot by indu
tion. Hen
e G is di
ot. �

In [38℄, Siegel introdu
ed the notion of the adjoint of a game. Re
all that

a Left end is a game with no Left option, and a Right end is a game with no

Right option.

De�nition 4.42 (Siegel [38℄) The adjoint of G, denoted Go
, is given by

Go =





∗ if G = 0 ,

{(GR)o|0} if G 6= 0 and G is a Left end,

{0|(GL)o} if G 6= 0 and G is a Right end,

{(GR)o|(GL)o} otherwise.

where (GR)o denotes the set of adjoints of elements of GR
.

Observe that we 
an re
ursively verify that the adjoint of any game is

di
ot. In normal play, the 
onjugate of a game is 
onsidered as its opposite

and is thus denoted −G, sin
e G+G ≡+ 0. The interest of the adjoint of a
game is that it plays a similar role as the opposite of a game in normal play,

to for
e a win for the se
ond player re
ursively, as the following proposition

suggests:

Proposition 4.43 (Siegel [38℄) For any game G, G + Go
is a misère P-

position.

The following proposition was stated in [38℄ for the universe G of all

games. Mimi
king the proof, we extend it to any universe.

Proposition 4.44 Let U be a universe of games, G and H two games (not

ne
essarily in U). We have G >
−
U H if and only if the following two 
ondi-

tions hold:

(i) For all X ∈ U with o−(H +X) > P, we have o−(G+X) > P; and

(ii) For all X ∈ U with o−(H +X) > N , we have o−(G+X) > N .

Proof. The su�
ien
y follows from the de�nition of >. For the 
onverse,

we must show that o−(G+X) > o−(H +X) for all X ∈ U . Sin
e we always
have o−(G+X) > R, if o−(H +X) = R, then there is nothing to prove. If

o−(H+X) = P or N , the result dire
tly follows from (i) or (ii), respe
tively.
Finally, if o−(H+X) = L, then by (i) and (ii) we have both o−(G+X) > P
and o−(G+X) > N , hen
e o−(G+X) = L. �

To obtain the 
anoni
al form of a game, we generally remove or bypass

options that are not relevant. These options are of two types: dominated

options 
an be removed be
ause another option is always a better move
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for the player, and reversible options are bypassed sin
e the answer of the

opponent is `predi
table'. Under normal play, simply removing dominated

options and bypassing reversible options is su�
ient to obtain a 
anoni
al

form. Under misère play, Mesdal and Ottaway [25℄ proposed de�nitions of

dominated and reversible options under misère play in the universe G of all

games, proving that deleting dominated options and bypassing reversible

options does not 
hange the equivalen
e 
lass of a game in general misère

play, then Siegel [38℄ proved that applying these operations a
tually de�nes a


anoni
al form in the universe G. Hen
e the same method may be applied to

obtain a misère 
anoni
al form. However, modulo smaller universes, games

with di�erent 
anoni
al forms may be equivalent. In the following, we adapt

the de�nition of dominated and reversible options to restri
ted universes

of games. We show in the next subse
tion that a 
anoni
al form modulo

the universe of di
ots 
an be obtained by removing dominated options and

applying a slightly more 
ompli
ated treatment to reversible options.

De�nition 4.45 (U-dominated and reversible options)

Let G be a game, U a universe of games.

(a) A Left option GL
is U -dominated by some other Left option GL′

if

GL′

>
−
U GL

.

(b) A Right option GR
is U -dominated by some other Right option GR′

if

GR′

6
−
U GR

.

(
) A Left option GL
is U -reversible through some Right option GLR

if

GLR 6
−
U G.

(d) A Right option GR
is U -reversible through some Left option GRL

if

GRL >
−
U G.

To obtain the known 
anoni
al forms for the universe G of all games [38℄

but also for the universe I of impartial games [10℄, one may just remove dom-

inated and bypass reversible options as de�ned. The natural question that

arises is whether a similar pro
ess gives 
anoni
al forms in other universes.

Indeed, it is remarkable that in all universes 
losed by followers, dominated

options 
an be ignored, as shown by the following lemma.

Lemma 4.46 Let G be a game and let U be a universe of games 
losed by

taking option of games. Suppose GL1
is U-dominated by GL2

, and let G′
be

the game obtained by removing GL1
from GL

. Then G ≡−
U G′

.

Proof. By Proposition 4.4, we have G′ 6
−
U G. We thus only have to show

that G′ >
−
U G. For a game X ∈ U , suppose Left 
an win G + X playing

�rst (respe
tively se
ond), we show that she also has a winning strategy in

G′+X. A
tually, she 
an simply follow the same strategy on G′+X, unless

she is eventually supposed to make a move from some G + Y to GL1 + Y .

In that 
ase, she is supposed to move to the game GL1 + Y and then win,
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so o−(GL1 + Y ) > P. But GL2 >
−
U GL1

and Y ∈ U , thus o−(GL2 + Y ) > P.
Therefore, Left 
an win by moving from G′ + Y to GL2 + Y , 
on
luding the

proof. �

Note that in the 
ase that interest us here, that is when G is di
ot, the

obtained game G′
stays di
ot.

Unfortunately, the 
ase involving reversible options is more 
omplex.

Nevertheless, we show in the next subse
tion how we 
an deal with them

in the spe
i�
 universe of di
ot games. Beforehand, we adapt the de�nition

of downlinked or uplinked games from [38℄ to restri
ted universes.

De�nition 4.47 Let G and H be any two games. If there exists some T ∈ U
su
h that o−(G + T ) 6 P 6 o−(H + T ), we say that G is U -downlinked to

H (by T ). In that 
ase, we also say that H is U -uplinked to G by T .

Note that if two games are U -downlinked and U ⊆ U ′
, then these two

games are also U ′
-downlinked. Therefore, the smaller the universe U is, the

less `likely' it is that two games are U -downlinked.

Lemma 4.48 Let G and H be any two games and U be a universe of games.

If G >
−
U H, then G is U-downlinked to no HL

and no GR
is U-downlinked

to H.

Proof. Let T ∈ U be any game su
h that o−(G+T ) 6 P. Sin
e G >
−
U H and

T ∈ U , o−(H +T ) 6 P as well. Hen
e for any HL ∈ HL
, o−(HL +T ) 6 N ,

and G is not U -downlinked to HL
by T . Similarly, let T ′ ∈ U su
h that

o−(H + T ′) > P. Then o−(G + T ′) > P and therefore, for any GR ∈ GR
,

o−(GR + T ′) > N and GR
is not U -downlinked to H by T ′

. �

4.2.2 Canoni
al form of di
ot games

In this subse
tion, we 
onsider games within the universe D of di
ots, and

show that we 
an de�ne pre
isely a 
anoni
al form in that 
ontext. In or-

der to do so, we �rst des
ribe how to bypass the D-reversible options in

Lemmas 4.49 and 4.50.

Lemma 4.49 Let G be a di
ot game. Suppose GL1
is D-reversible through

GL1R1
and either GL1R1 6= 0 or there exists another Left option GL2

of G
su
h that o−(GL2) > P. Let G′

be the game obtained by bypassing GL1
:

G′ = {(GL1R1)L, GL \ {GL1}|GR} .

Then G′
is a di
ot game and G ≡−

D G′
.

Proof. First observe that sin
e G is di
ot, all options of G′
are di
ot, and

under our assumptions, G′
has both Left and Right options. Thus G′

is a
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di
ot game. We now prove that for any di
ot game X, the games G+X and

G′ +X have the same misère out
ome.

Suppose Left 
an win playing �rst (respe
tively se
ond) onG+X. Among

all the winning strategies for Left, 
onsider one that always re
ommends a

move on X, unless the only winning move is on G. In the game G′ +X, let

Left follow the same strategy ex
ept if the strategy re
ommends pre
isely

the move from G to GL1
. In that 
ase, the position is of the form G′ + Y ,

with o−(GL1 + Y ) > P. Thus o−(GL1R1 + Y ) > N .

Suppose Left has a winning move in Y from GL1R1 + Y , i.e. there

exists some Y L
su
h that o−(GL1R1 + Y L) > P . But then by reversibil-

ity, o−(G+ Y L) > P, 
ontradi
ting our 
hoi
e of Left's strategy. So either

Left has a winning move of type GL1R1L + Y , whi
h she 
an play dire
tly

from G′ + Y , or she wins be
ause she has no possible moves, meaning that

GL1R1 = 0 and Y = 0. In that 
ase, she 
an also win in G′ + Y = G′
by


hoosing the winning move to GL2
.

Now suppose Right 
an win playing �rst (respe
tively se
ond) on G+X.

Consider any winning strategy for Right, and let him follow exa
tly the

same strategy on G′ + X unless Left moves from some position G′ + Y to

GL1R1L + Y . First note that by our assumption, G′
is not a Left end, thus

if Right follows this strategy, Left 
an never run out of move prematurely.

Suppose now that Left made a move from some position G′ + Y to

GL1R1L + Y . Until that move, Right was following his winning strat-

egy, so o−(G + Y ) 6 P. Sin
e GL1R1 6
−
D G and Y is a di
ot, we have

o−(GL1R1 + Y ) 6 P. Thus GL1R1L + Y 6 N and Right 
an adapt his

strategy. �

With the previous lemma, we do not bypass reversible options through

0 when all other Left options have misère out
ome at most N . Su
h re-

versible options 
annot be treated similarly, as shows the example of the

game {0, ∗|∗}. Note that as shown in [2℄ and [3℄, {∗|∗} = ∗ + ∗ ≡−
D 0 and

thus, by Proposition 4.4, {0, ∗|∗} >
−
D 0. Therefore, the Left option ∗ is

D-reversible through 0. However, {0, ∗|∗} 6≡−
D {0|∗} sin
e the �rst is an N -

position and the se
ond is an R-position. Yet, we prove with the following

lemma that all reversible options ignored by Lemma 4.49 
an be repla
ed by

∗ without 
hanging the equivalen
e 
lass of the game.

Lemma 4.50 Let G be a di
ot game. Suppose GL1
is D-reversible through

GL1R1 = 0. Let G′
be the game obtained by repla
ing GL1

by ∗:

G′ = {∗, GL \ {GL1}|GR} .

Then G′
is a di
ot game and G ≡−

D G′
.

Proof. First observe that sin
e G and ∗ are di
ots, all options of G′
are

di
ots, and G′
has both Left and Right options. Thus G′

is a di
ot game.
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We now prove that for any di
ot game X, the games G+X and G′+X have

the same misère out
ome.

Suppose Left 
an win playing �rst (respe
tively se
ond) onG+X. Among

all the winning strategies for Left, 
onsider one that always re
ommends a

move on X, unless the only winning move is on G. In the game G′ +X, let

Left follow the same strategy ex
ept if the strategy re
ommends pre
isely

the move from G to GL1
. In that 
ase, the position is of the form G′ + Y ,

with o−(GL1 + Y ) > P. Thus o−(GL1R1 + Y ) > N .

Suppose Left has a winning move in GL1R1 + Y = 0 + Y = Y , i.e.

there exists some Y L
su
h that o−(Y L) > P. But then by reversibility,

o−(G + Y L) > P, 
ontradi
ting our 
hoi
e of Left's strategy. So Left has

no winning move in Y , and she wins be
ause she has no possible moves, i.e.

Y = 0. In that 
ase, she 
an also win in G′+Y = G′
by 
hoosing the winning

move to ∗.
Now suppose Right 
an win playing �rst (respe
tively se
ond) on G+X.

Consider any winning strategy for Right, and let him follow exa
tly the same

strategy on G′ +X unless Left moves from some position G′ + Y to ∗+ Y .

First note that by our assumption, G′
is not a Left end, thus if Right follows

this strategy, Left 
an never run out of move prematurely.

Suppose now that Left made a move from some position G′ + Y to

∗ + Y . Until that move, Right was following his winning strategy, so

o−(G + Y ) 6 P. Sin
e 0 = GL1R1 6
−
D G and Y is di
ot, we have

o−(Y ) = o−(0 + Y ) 6 o−(G+ Y ) 6 P . So Right 
an move from ∗ + Y to

Y and win. �

Note that some reversible options may be dealt with using both Lem-

mas 4.49 and 4.50. Yet, it is still possible to apply Lemma 4.49 and remove

su
h an option after having applied Lemma 4.50.

At this point, we want to de�ne a redu
ed form for ea
h game obtained

by applying the pre
eding lemmas as long as we 
an. In addition, it was

proved by Allen in [2℄ and [3℄ that the game {∗|∗} is equivalent to 0 modulo

the universe of di
ot games, and we thus redu
e this game to 0. Therefore,
we de�ne the redu
ed form of a di
ot game as follows:

De�nition 4.51 (Redu
ed form) Let G be a di
ot. We say G is in re-

du
ed form if:

(i) it is not {∗|∗},

(ii) it 
ontains no dominated option,

(iii) if Left has a reversible option, it is ∗ and no other Left option has

out
ome P or L,

(iv) if Right has a reversible option, it is ∗ and no other Right option has

out
ome P or R,

(v) all its options are in redu
ed form.
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Observe �rst the following:

Theorem 4.52 Every game G is equivalent modulo the universe of di
ots

to a game in redu
ed form H whose birthday is no larger than the birthday

of G.

Proof. To obtain a game H equivalent to G in redu
ed form, we 
an apply

iteratively Lemmas 4.46, 4.49 and 4.50. Applying these lemmas, we never

in
rease the depth of the 
orresponding game tree, thus the birthday of the

redu
ed game H is no larger than the birthday of G. �

We now prove that the redu
ed form of a game 
an be seen as a 
anoni
al

form. Before stating the main theorem, we need the two following lemmas.

Lemma 4.53 Let G and H be any games. If G �−
D H, then:

(a) There exists some Y ∈ D su
h that o−(G+Y ) 6 P and o−(H+Y ) > N ;

and

(b) There exists some Z ∈ D su
h that o−(G+Z) 6 N and o−(H+Z) > P.

Proof. Negating the 
ondition of Proposition 4.44, we get that (a) or (b)

must hold. To prove the lemma, we show that (a) ⇒ (b) and (b) ⇒ (a).

Consider some Y ∈ D su
h that o−(G + Y ) 6 P and o−(H + Y ) > N ,

and set

Z = {(HR)o, 0|Y } .

First note that sin
e Z has both a Left and a Right option, and all its options

are di
ots, Z is also di
ot. We now show that Z satis�es o−(G + Z) 6 N
and o−(H +Z) > P, as required in (b). From the game G+Z, Right has a
winning move to G+Y , so o−(G+Z) 6 N . We now prove that Right has no

winning move in the game H+Z. Observe �rst that H+Z is not a Right end

sin
e Z is not. If Right moves to some HR +Z, Left has a winning response

to HR+(HR)o. If instead Right moves to H+Y then, sin
e o−(H+Y ) > N ,

Left 
an win. Therefore o−(H + Z) > P, and (a) ⇒ (b).

To prove (b) ⇒ (a), for a given Z we set Y = {Z|0, (GL)o} and prove

similarly that Left wins if she plays �rst on H+Y and loses if she plays �rst

on G+ Y . �

Lemma 4.54 Let G and H be any games. The game G is D-downlinked to

H if and only if no GL >
−
D H and no HR 6

−
D G.

Proof. Consider two games G and H su
h that G is D-downlinked to H
by some third game T , i.e. o−(G + T ) 6 P 6 o−(H + T ). Then Left

has no winning move from G + T , thus o−(GL + T ) 6 N and similarly

o−(HR + T ) > N . Therefore, T witnesses both GL �−
D H and G �−

D HR
.

Conversely, suppose that no GL >
−
D H and no HR 6

−
D G. Set

GL = {GL
1 , . . . , G

L
k } and HR = {HR

1 , . . . ,H
R
ℓ }. By Lemma 4.53, we 
an
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asso
iate to ea
h GL
i ∈ GL

a game Xi ∈ D su
h that o−(GL
i +Xi) 6 P and

o−(H +Xi) > N . Likewise, to ea
h HR
j ∈ HR

, we asso
iate a game Yj ∈ D

su
h that o−(G+Yj) 6 N and o−(HR
j +Yj) > P. Let T be the game de�ned

by

TL =

{
{0}
(GR)o ∪ {Yj | 1 6 j 6 ℓ}

if both G and H are Right ends,

otherwise.

TR =

{
{0}
(HL)o ∪ {Xi | 1 6 i 6 k}

if both G and H are Left ends,

otherwise.

If HR
(respe
tively GR

) is non-empty, then so is {Yj | 1 6 j 6 ℓ}
(respe
tively (GR)o), and T has a Left option. If both GR

and HR
are

empty, then TL = {0}, so T always has a Left option. Similarly, T also

always has a Right option. Moreover, all these options are di
ots, so T is

di
ot. We 
laim that G is D-downlinked to H by T .
To show that o−(G + T ) 6 P, we just prove that Left loses if she plays

�rst in G+T . Sin
e T has a Left option, G+T is not a Left end. If Left moves

to some GL
i + T , then by our 
hoi
e of Xi, Right has a winning response

to GL
i +Xi. If Left moves to some G + (GR)o, then Right 
an respond to

GR+(GR)o and win (by Proposition 4.43). If Left moves to G+Yj, then by

our 
hoi
e of Yj , o
−(G + Yj) 6 N and Right 
an win. The only remaining

possibility is, when G and H are Right ends, that Left moves to G+0. But
then Right 
annot move and wins.

Now, we show that o−(H + T ) > P by proving that Right loses playing

�rst in H + T . If Right moves to some HR
j + T , then Left has a winning

response to HR
j +Yj . If Right moves to H+(HL)o, then Left wins by playing

to HL + (HL)o, and if Right moves to H + Xi, then by our 
hoi
e of Xi,

o−(H +Xi) > N and Left 
an win. Finally, the only remaining possibility,

when G and H are Left ends, is that Right moves to 0. But then Left 
annot

answer and wins. �

We now prove the main theorem of the se
tion.

Theorem 4.55 Consider two di
ot games G and H. If G ≡−
D H and both

are in redu
ed form, then G = H.

Proof. If G = H = 0, the result is 
lear. We pro
eed by indu
tion on the

birthdays of the games. Assume without loss of generality that G has an

option. Sin
e G is di
ot, it has both a Left and a Right option.

Consider a Left option GL
. Suppose �rst that GL

is not D-reversible.

Sin
e H ≡−
D G, H >

−
D G and Lemma 4.48 implies that H is not downlinked

to GL
. Then by Lemma 4.54, either there exists some HL >

−
D GL

, or there

exists some Right option GLR
of GL

with GLR 6
−
D H. The latter would

imply that G >
−
D GLR

and thus that GL
is D-reversible, 
ontradi
ting our

assumption. So we must have some option HL
su
h that HL >

−
D GL

. A
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similar argument for HL
gives that there exists some Left option GL′

of G
su
h that GL′

>
−
D HL

. Therefore GL′

>
−
D HL >

−
D GL

. If GL′

and GL
are two

di�erent options, thenGL
is dominated byGL′

, 
ontradi
ting our assumption

that G is in redu
ed form. Thus, GL′

and GL
are the same option, and

GL ≡−
D HL

. ButGL
andHL

are in redu
ed form, so by indu
tion hypothesis,

GL = HL
. The same argument applied to the Right options of G and to

the options of H shows the pairwise 
orresponden
e of all non-D-reversible

options of G and H.

Assume now that GL
is a D-reversible option. Then GL = ∗ and for all

other Left options GL′

, we have o−(GL′

) 6 N , and by reversibility, there

exists some Right option GLR
of GL

su
h that GLR 6
−
D G. Sin
e the only

Right option of ∗ is 0, G >
−
D 0. Thus H >

−
D 0, so either H = 0 or Left has a

winning move in H, namely a Left option HL
su
h that o−(HL) > P. First

assume H = 0. Then by the pairwise 
orresponden
e proved earlier, G has

no non-D-reversible options. Yet it is a di
ot and must have both a Left and

a Right option, and sin
e it is in redu
ed form, both are ∗. Then G = {∗|∗}, a

ontradi
tion. Now assume H has a Left option HL

su
h that o−(HL) > P.
IfHL

is not D-reversible, then it is in 
orresponden
e with a non-D-reversible

option GL′

, but then we should have o−(HL) = o−(GL′

) 6 N , a 
ontradi
-

tion. So HL
is D-reversible, and HL = GL = ∗. The same argument applied

to possible Right D-reversible options 
on
ludes the proofs that G = H. �

This proves that the redu
ed form of a game is unique, and that any two

D-equivalent games have the same redu
ed form. Therefore, the redu
ed

form as des
ribed in De�nition 4.51 
an be 
onsidered as the 
anoni
al form

of the game modulo the universe of di
ot games.

Siegel showed in [38℄ that for any games G and H, if G >− H, then

G >+ H also in normal play. This result 
an be strengthened as follows :

Theorem 4.56 Let G and H be any games. If G >
−
D H, then G >+ H.

Proof. Consider any two games G and H su
h that G >
−
D H. We show that

G+H >+ 0, i.e. that Left 
an win G+H in normal play when Right moves

�rst [4℄, by indu
tion on the birthdays of G and H. Suppose Right plays to

some GR +H. Sin
e G >
−
D H, Lemma 4.48 implies GR

is not D-downlinked

to H. By Lemma 4.54, either there exists some Left option GRL
of GR

with

GRL >
−
D H, or there exists some Right option HR

of H with GR >
−
D HR

.

In the �rst 
ase, we get by indu
tion that GRL >+ H and Left 
an win

by moving to GRL + H. In the se
ond 
ase, we get GR >+ HR
, and Left


an win by moving to GR +HR
. The argument when Right plays to some

G+HL
is similar. �

Theorem 4.56 implies in parti
ular that if two games are equivalent in

misère play modulo D, then they are also equivalent in normal play. It allows

us to use any normal play tools to prove in
omparability or distinguishability
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0 ∗ α α s s

z z ∗2

Figure 4.10: Game trees of the 9 di
ot games born by day 2

(i.e. non equivalen
e) to dedu
e it modulo the universe of di
ot games.

Moreover, a 
orollary of Theorem 4.56 is that its statement is also true for

any universe 
ontaining D, in parti
ular for the universe G of all games

(implying the result of [38℄) and for the universe E of dead-ending games we

study in the next se
tion.

Corollary 4.57 Let G and H be any games, U a universe 
ontaining all

di
ot positions. If G >
−
U H, then G >+ H.

4.2.3 Di
ot misère games born by day 3

We now use Theorem 4.55 to 
ount the di
ot misère games born by day 3.
Re
all that the numbers of impartial misère games distinguishable modulo

the universe I of impartial games that are born by day 0, 1, 2, 3 and 4 are

respe
tively 1, 2, 3, 5 and 22 (see [10℄). Siegel [38℄ proved that the numbers

of misère games distinguishable modulo the universe G of all games that are

born by day 0, 1 and 2 are respe
tively 1, 4 and 256, while the number of

distinguishable misère games born by day 3 is less than 2183. Noti
e that

sin
e impartial games form a subset of di
ot games, the number of di
ot

games born by day 3 lies between 5 and 2183. Before showing that this

number is exa
tly 1268, we state some properties of the di
ot games born by

day 2.

Proposition 4.58 There are 9 di
ot games born by day 2 distinguishable

modulo the universe D of di
ot games, namely 0, ∗, α = {0|∗}, α = {∗|0},
s = {0, ∗|0}, z = {0, ∗|∗}, s = {0|0, ∗}, z = {∗|0, ∗}, and ∗2 = {0, ∗|0, ∗} (see

Figure 4.10). They are partially ordered a

ording to Figure 4.11. Moreover,

the out
omes of their sums are given in Table 4.12.
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s z

∗ α
∗2

α 0

s z
Figure 4.11: Partial ordering of di
ot games born by day 2

0 ∗ α α s z s z ∗2

0 N P R L L N R N N
∗ P N N N N L N R N
α R N P N N P R R R
α L N N P L L N P L
s L N N L L L N P L

z N L P L L L P N L
s R N R N N P R R R
z N R R P P N R R R
∗2 N N R L L L R R P

Table 4.12: Out
omes of sums of di
ots born by day 2

Proof. There are 10 di
ot games born by day 2, of whi
h 0 and {∗|∗} are

equivalent. We now prove that these nine games are pairwise distinguishable

modulo the universe D of di
ot games

1

. First note that these games are all

in redu
ed form. Indeed, sin
e all options are either 0 or ∗ whi
h are not


omparable modulo D, there are no dominated options. Moreover, ∗ might

be reversible through 0, but sin
e there are no other option at least P, it

annot be redu
ed. Thus, by Theorem 4.55, these games are pairwise non-

equivalent.

The proof of the out
omes of sums of these games (given in Table 4.12)

is tedious but not di�
ult, and omitted here.

We now show that these games are partially ordered a

ording to Fig-

ure 4.11. Using the fa
t that {∗|∗} ≡−
D 0 and Proposition 4.4, we easily

infer the relations 
orresponding to edges in Figure 4.11. All other pairs are

in
omparable: for ea
h pair (X,Y ), there exist Z1, Z2 ∈ {0, ∗, α, α, s, s, z, z}
su
h that o−(X + Z1) 66 o−(Y + Z1) and o−(X + Z2) 6> o−(Y + Z2) (see
Table 4.13 for expli
it su
h Z1 and Z2). �

1

Milley gave an alternate proof of this fa
t in [26℄.



138 4.2. Canoni
al form of di
ot games

X Y
Z1 su
h that

o−(X + Z1) 66 o−(Y + Z1)
Z2 su
h that

o−(X + Z2) 6> o−(Y + Z2)

s z s s
s α α α
s 0 z z
z ∗ 0 0
z α α α
∗ α α α
∗ 0 0 0
∗ ∗2 0 0
α ∗2 0 α
α 0 ∗ ∗
α α α α
∗2 0 ∗ ∗

Table 4.13: In
omparability of di
ots born by day 2

We now start 
ounting the di
ot games born by day 3. Their Left and

Right options are ne
essarily di
ot games born by day 2. We 
an 
onsider

only games in their 
anoni
al form, so with no D-dominated options.

Using Figure 4.11, we �nd the following 50 anti
hains:





all 32 subsets of {0, ∗, α, α, ∗2},
{s, z} and {s, z},
4 
ontaining s and any subset of {0, α}
4 
ontaining z and any subset of {∗, α}
4 
ontaining s and any subset of {0, α}
4 
ontaining z and any subset of {∗, α}

Therefore, 
hoosing GL
and GR

among these anti
hains, together with

the fa
t that G is di
ot, we get 492 + 1 = 2402 di
ot games born by day 3
with no D-dominated options.

To get only games in 
anoni
al form, we still have to remove games with

D-reversible options. Note that an option from a di
ot game born by day 3

an only be D-reversible through 0 or ∗ sin
e these are the only di
ot games

born by day 1. To deal with D-reversible options, we 
onsider separately the

games with di�erent out
omes. If Left has a winning move from a game G,
namely a move to ∗, α or s, or if she has no move from G, then o−(G) > N .

Otherwise, o−(G) 6 P. Likewise, if Right has a winning move from G,
namely a move to ∗, α or s, or if he has no move from G, then o−(G) 6 N .

Otherwise, o−(G) > P. From this observation, we infer the out
ome of any

di
ot game born by day 3.
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Consider �rst the games G with out
ome P, i.e. GL ∩ {∗, α, s} = ∅
and GR ∩ {∗, α, s} = ∅. Sin
e o−(0) = N , G and 0 are D-in
omparable,

so no option of G is D-reversible through 0. The following lemma allows to


hara
terise di
ot games born by day 3 whose out
ome is P and that 
ontain

D-reversible options through ∗.

Lemma 4.59 Let G be a di
ot game born by day 3 with misère out
ome P.
We have G >

−
D ∗ if and only if GL ∩ {0, z} 6= ∅.

Proof. First suppose that GL∩{0, z} 6= ∅. Let X be a di
ot game su
h that

Left has a winning strategy on ∗+X when playing �rst (respe
tively se
ond).

Left 
an follow the same strategy on G+X, unless the strategy re
ommends

that she plays from some ∗+Y to 0+Y , or Right eventually plays from some

G+Z to some GR +Z. In the �rst 
ase, we must have o−(0+Y ) > P. Left

an move from G + Y either to 0 + Y or to z + Y , whi
h are both winning

moves. Indeed, sin
e z >
−
D 0, we have o−(z+Y ) > o−(0+Y ) > P. Suppose

now that Right just moved from G + Z to some GR + Z. By our 
hoi
e

of strategy, we have o−(∗ + Z) > P. If GR = 0, then Left 
an 
ontinue

her strategy sin
e 0 + Z is also a Right option of ∗ + Z. Otherwise, sin
e

GR ∩ {∗, α, s} = ∅, GR
is one of α, s, z, z, ∗2 and ∗ is a Left option of GR

.

Then Left 
an play from GR+Z to ∗+Z and win. Thus, if Left wins ∗+X,

she wins G+X as well and thus G >
−
D ∗.

Suppose now that GL ∩ {0, z} = ∅, that is GL ⊆ {α, s, z, ∗2}. Let

X = {s|0}. In ∗+X, Left wins playing to 0 +X and Right wins playing to

∗+ 0, hen
e o−(∗ +X) = N . On the other hand, in G+X, Right wins by

playing to G + 0, but Left has no other option than α +X, s +X, z +X,

∗2 +X, G + s. In the last four, Right wins by playing to 0 +X or G + 0,
both with out
ome P. In α+X, Right wins by playing to α+ 0 whi
h has

out
ome R. So o−(G+X) = R, and sin
e o−(∗+X) = N , we have G �−
D ∗.
�

We dedu
e the following theorem:

Theorem 4.60 A di
ot game G born by day 3 with out
ome P is in 
anon-

i
al form if and only if

{
GL ∈

{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
, and

GR ∈
{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
.

This yields 8 · 8 = 64 di
ots non equivalent modulo D.

Proof. Let G be a di
ot game born by day 3 with misère out
ome

P, in 
anoni
al form. By our earlier statement, GL ⊆ {0, α, s, z, z, ∗2}.
By Lemma 4.59, options α, s, z, z, ∗2 are reversible through ∗ whenever

GL ∩ {0, z} 6= ∅. So z is not a Left option of G, and if 0 is, there

are no other Left options. Thus the only anti
hains left for GL
are
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{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
. A similar argument with


onjugates gives all possibilities for GR
. �

Now we 
onsider games G with out
ome L, i.e. GL ∩ {∗, α, s} 6= ∅ and

GR ∩ {∗, α, s} = ∅. Sin
e G 
 0 and G 
 ∗, no Right option of G is

D-reversible. The two following lemmas allow us to 
hara
terise di
ot games

born by day 3 whose out
ome is L and that 
ontain D-reversible Left options.

First, we 
hara
terise positions that may 
ontain D-reversible Left options

through ∗.

Lemma 4.61 Let G be a di
ot game born by day 3 with misère out
ome L.
We have G >

−
D ∗ if and only if GL ∩ {0, z} 6= ∅.

Proof. The proof that if GL ∩ {0, z} 6= ∅, then Left wins G +X whenever

she wins ∗+X is the same as for Lemma 4.59.

Consider now the 
ase when GL ∩ {0, z} = ∅, that is

GL ⊆ {∗, α, s, α, s, z, ∗2}. Assume �rst that {0, z} ∩ GR 6= ∅ and let

X = {s|0}. Re
all that in ∗+X, Left wins playing to 0+X and Right wins

playing to ∗+0, hen
e o−(∗+X) = N . On the other hand, in G+X, Left has

no other option than α+X, ∗+X,α+X, s+X, s+X, z+X, ∗2+X,G+s. In
α+X, Right wins by playing to α+0, whose out
ome is R. In G+s, by our

assumption, Right 
an play either to 0 + s or to z + s, with out
ome R and

P respe
tively, and thus wins. In all other 
ases, Right wins by playing to

0+X, whose out
ome is P. Thus o−(G+X) 6 P, and sin
e o−(∗+X) = N ,

we have G �−
D ∗.

Now assume {0, z}∩GR = ∅, that is GR ⊆ {α, s, z, ∗2}. Let X ′ = {z|0}.
In ∗ + X ′

, Left wins playing to 0 + X ′
and Right wins playing to ∗ + 0,

hen
e o−(∗ + X ′) = N . On the other hand, in G + X ′
, Left has no other

option than G + z, α + X ′, ∗ + X ′, α + X ′, s + X ′, s + X ′, z + X ′, ∗2 + X ′
.

In α +X ′
, Right wins by playing to α + 0 whose out
ome is R. In G + z,

Right wins by playing either to α+ z or s + z, both with out
ome P, or to
z + z or ∗2 + z, both with out
ome R. In the remaining 
ases, Right wins

by playing to 0 +X ′
whose out
ome is P. Thus o−(G+X ′) 6 P, and sin
e

o−(∗+X ′) = N , we have G �−
D ∗. �

Now, we 
hara
terise games that may 
ontain D-reversible Left options

through 0. The following lemma 
an a
tually be proved for both games with

out
ome L or N , and we also use it for the proof of Theorem 4.64.

Lemma 4.62 Let G be a di
ot game born by day 3 with misère out
ome L
or N . We have G >

−
D 0 if and only if GR ∩ {0, α, z} = ∅.

Proof. Suppose �rst that GR ∩ {0, α, z} = ∅. Then every Right option of

G has 0 as a Left option. Let X be a di
ot su
h that Left has a winning

strategy on 0 +X when playing �rst (respe
tively se
ond). Left 
an follow

the same strategy on G + X until either Right plays on G or she has to
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move from G+ 0. In the �rst 
ase, she 
an answer in GR + Y to 0 + Y and


ontinue her winning strategy. In the se
ond 
ase, she wins in G + 0 sin
e

o−(G) > N . Therefore, G >
−
D 0.

Consider now the 
ase when GR ∩ {0, α, z} 6= ∅. Let X = {α|0}, note
that o−(X) = P. When playing �rst on G+X, Right wins by playing either

to 0 + X with out
ome P, or to α + X or z + X, both with out
ome R.

Hen
e o−(G+X) 6 N so G �−
D 0. �

We now are in position to state the set of di
ots born by day 3 with

out
ome L in 
anoni
al form. Given two sets of sets A and B, we use the

notation A ⊎B to denote the set {a ∪ b|a ∈ A, b ∈ B}.

Theorem 4.63 A di
ot game G born by day 3 with out
ome L is in 
anon-

i
al form if and only if either





GL ∈
({

{∗}, {α}, {∗, α}
}
⊎
{
∅, {0}, {α}, {∗2}, {α, ∗2}

})

∪
{
{s}, {α, s}, {α, s}, {∗, z}, {s, 0}, {∗, α, z}

}
, and

GR ∈
{
{0}, {α}, {0, α}, {0, ∗2}, {α, ∗2}, {0, α, ∗2}, {z}, {α, z}, {0, s}

}
,

or {
GL ∈

{
{∗}, {∗, 0}, {∗, α}

}
, and

GR ∈
{
{∗2}, {s}, {z}, {s, z}

}
.

This yields 21 · 9 + 3 · 4 = 201 di
ots non equivalent modulo D.

Proof. Let G be a di
ot game born by day 3 with out
ome L, in 
anoni
al

form. By our earlier statement, GL ∩{∗, α, s} 6= ∅. By Lemma 4.61, options

α, s, z, z, ∗2 are reversible Left options through ∗ whenever GL ∩ {0, z} 6= ∅.
Thus, we have 21 of the 50 anti
hains remaining for GL

, namely:





15 
ontaining {∗}, {α} or {∗, α} together with {0} or any subset of {α, ∗2}
{s}, {s, 0} and {s, α},
{s, α}
{z, ∗} and {z, ∗, α}

Now, by Lemma 4.62, options ∗, α, s, s, z, and ∗2 are reversible through

0 whenever GR ∩ {0, α, z} = ∅. By Lemma 4.50, these options should

then be repla
ed by ∗. Thus the only anti
hains remaining for GL
when

GR ∩ {0, α, z} = ∅ are {∗}, {∗, 0} and {∗, α}.
Consider now Right options. By our earlier statement,

GR ⊆ {0, α, s, z, z, ∗2}, and no Right option is reversible. Interse
ting

{0, α, z}, we have the anti
hains: {0}, {α}, {0, α}, {0, ∗2}, {α, ∗2},
{0, α, ∗2}, {z}, {α, z} and {0, s}. Non interse
ting {0, α, z}, we have {∗2},
{s}, {z} and {s, z}. Combining these sets, we get the theorem. �

The di
ot games born by day 3 with out
ome R in 
anoni
al form are

exa
tly the 
onjugates of those with out
ome L.
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Now 
onsider di
ot games with out
ome N . By our earlier statement,

we have GL ∩ {∗, α, s} 6= ∅ and GR ∩ {∗, α, s} 6= ∅. Note that G and ∗ are

D-in
omparable sin
e o−(∗) = P. Therefore no option of G is D-reversible

through ∗. Re
all also that by Lemma 4.62, we 
an re
ognise di
ot games

born by day 3 whose out
ome isN and that may 
ontain D-reversible options

through 0.

Theorem 4.64 A di
ot game G born by day 3 with out
ome N is in 
anon-

i
al form if and only if either G = 0 or

or





GL ∈
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{s}, {α, s}, {∗, z}

}
, and

GR ∈
{
{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}

}
,

or





GL ∈
{
{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}

}
, and

GR ∈
{
{∗}, {z}, {∗, z}, {∗, ∗2}, {z, ∗2}, {∗, z, ∗2}

}

∪
{
{s}, {α, s}, {∗, z}

}
,

or





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{0}, {α}, {0, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, 0}, {s, α}, {s, α, 0}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, 0}, {∗, z, α}

}
, and

GR ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{0}, {α}, {0, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, 0}, {s, α}, {s, α, 0}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, 0}, {∗, z, α}

}
.

This yields 1 + 9 · 4 + 4 · 9 + 27 · 27 = 802 di
ots non equivalent modulo D.

Proof. Re
all that by Lemma 4.62, if GR ∩ {0, α, z} = ∅, then Left options

∗, α, s, s, z, ∗2 are reversible through 0 and get repla
ed by ∗. Similarly, if

GL ∩ {0, α, z} = ∅, then Right options ∗, α, s, s, z, ∗2 are reversible through

0 and get repla
ed by ∗.

Consider �rst the 
ase when GR ∩ {0, α, z} = ∅ and GL ∩ {0, α, z} = ∅.
Then GL ∩ {α, s, s, z, ∗2} = ∅ and GR ∩ {α, s, s, z, ∗2} = ∅. So G = 0 or

{∗|∗} whi
h redu
es to 0.

Now, suppose GR ∩ {0, α, z} 6= ∅ but GL ∩ {0, α, z} = ∅. Then

GR ∩ {α, s, s, z, ∗2} = ∅. Re
all that sin
e o−(G) = N , GR ∩ {∗, α, s} 6= ∅.
So GR ∈ {{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}}. On the other hand, GL


an be any

anti
hain 
ontaining one of {∗, α, s} and possibly some of {s, z, ∗2}. Thus

GL ∈ {{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}, {s}, {α, s}, {∗, z}}. When

GL∩{0, α, z} 6= ∅ and GR∩{0, α, z} = ∅, we get GL
and GR

by 
onjugating

the previous GR
and GL

respe
tively.

Finally, when GR ∩ {0, α, z} 6= ∅ and GL ∩ {0, α, z} 6= ∅, no option is

reversible. Therefore, the anti
hains for GR
are those 
ontaining at least one
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s z

∗ α
∗2

α
∗+ ∗

s z

0

Figure 4.14: Partial ordering of di
ot games born by day 2 in the general universe

of {0, α, z} and one of {∗, α, s}. There are 27 of them, namely:





18 
ontaining some subset of {∗, α}, some subset of {0, α} and possibly {∗2}
{s, z}
{0, s}, {α, s} and {0, α, s},
{∗, z}, {α, z} and {∗, α, z},
{0, α, s}
{∗, α, z}

The anti
hains for GL
are the 
onjugates of the anti
hains for GR

. �

Adding the number of games with out
ome P, L, R, and N , we get:

Theorem 4.65 There are 1268 di
ots born by day 3 non equivalent modulo D.

4.2.3.1 Di
ot games born by day 3 in the general universe

Comparing the number of di
ot games born by day 3 in 
anoni
al form to

the number of games born by day 3 in 
anoni
al form is not that relevant,

as there are only 1046530 game trees of depth 3 representing di
ot games,

whi
h is far from the 21024 game trees representing all games born by day 3,
or even the (slightly less than) 2183 with no dominated option. This is why

we 
ount the number of di
ot games born by day 3 in their general 
anoni
al

form modulo the universe of all games.

Re
all that a game is in 
anoni
al form if and only if all its options are

in 
anoni
al form and it has no dominated option nor reversible option.

We �rst re
all a result from [38℄.

Theorem 4.66 If H is a Left end and G is not, then G �− H.

This gives us the following 
orollary, when we only 
onsider di
ot games.

Corollary 4.67 If G is a di
ot game whi
h is not 0, then G and 0 are

in
omparable.
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Proposition 4.68 There are 10 di
ot games born by day 2 distinguishable

modulo the universe of all games, namely 0, ∗, ∗ + ∗ = {∗|∗} α = {0|∗},
α = {∗|0}, s = {0, ∗|0}, z = {0, ∗|∗}, s = {0|0, ∗}, z = {∗|0, ∗}, and

∗2 = {0, ∗|0, ∗}. They are partially ordered a

ording to Figure 4.14.

Proof. The proof is similar to the proof of Proposition 4.58. �

We now start 
ounting the di
ot games born by day 3. Their Left and

Right options are ne
essarily di
ot games born by day 2. We 
an 
onsider

only games in their 
anoni
al form, so with no dominated option.

Using Figure 4.14, we �nd the following 100 anti
hains:





all 64 subsets of {0, ∗ + ∗, ∗, α, α, ∗2},
{s, z}, {0, s, z}, {s, z} and {0, s, z},
8 
ontaining s and any subset of {0, ∗ + ∗, α}
8 
ontaining z and any subset of {0, ∗, α}
8 
ontaining s and any subset of {0, ∗ + ∗, α}
8 
ontaining z and any subset of {0, ∗, α}

Therefore, 
hoosing GL
and GR

among these anti
hains, together with

the fa
t that G is di
ot, we get 992 + 1 = 9802 di
ot games born by day 3
with no dominated option.

To get only games in 
anoni
al form, we still have to remove games with

reversible options. Note that an option from a di
ot game born by day 3

an only be reversible through 0 or ∗ sin
e these are the only di
ot games

born by day 1. As no di
ot game is 
omparable with 0, no option 
an be

reversible through 0. Note that as o−(∗) = P, no game with out
ome N
may have a reversible option through ∗, and no game with out
ome R may

have a Left option reversible through ∗. Again, if Left has a winning move

from a game G, namely a move to ∗, α or s, or if she has no move from G,
then o−(G) > N . Otherwise, o−(G) 6 P. Likewise, if Right has a winning

move from G, namely a move to ∗, α or s, or if he has no move from G, then
o−(G) 6 N . Otherwise, o−(G) > P.

We now 
hara
terise di
ot games having reversible options.

Lemma 4.69 Let G be a di
ot game born by day 3 with misère out
ome P
or L. We have G >− ∗ if and only if 0 ∈ GL

.

Proof. First suppose 0 ∈ GL
. Let X be a game su
h that Left has a winning

strategy on ∗ +X when playing �rst (respe
tively se
ond). Left 
an follow

the same strategy on G+X, unless the strategy re
ommends that she plays

from some ∗ + Y to 0 + Y , or Right eventually plays from some G + Z to

some GR + Z. In the �rst 
ase, she 
an just play from G + Y to 0 + Y .

Suppose now that Right just moved from G + Z to some GR + Z. By our


hoi
e of strategy, we have o−(∗+Z) > P. If GR = 0, then Left 
an 
ontinue
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her strategy sin
e 0 + Z is also a Right option of ∗ + Z. Otherwise, sin
e

GR ∩ {∗, α, s} = ∅, GR
is one of ∗+ ∗, α, s, z, z, ∗2 and ∗ is a Left option of

GR
. Then Left 
an play from GR + Z to ∗+ Z and win. Thus, if Left wins

∗+X, she wins G+X as well and thus G >− ∗.

Assume now 0 /∈ GL
. Let X = {·|{·|3}}. In ∗+X, Left wins by moving

to X, so o−(∗ +X) > N . On the other hand, in G +X, Left has to move

to some GL + X, where GL
is a non-zero di
ot. Then Right 
an move to

GL + {·|3}, where Left has to play in GL
, to GLL + {·|3}, where GLL

is a

di
ot born by day 1. Right's move to GLL+3 is then a winning move. hen
e

o−(G+X) 6 P, and we have G �− ∗. �

We now are in position to state the set of di
ot games born by day 3 in


anoni
al form (modulo the universe of all games) with any out
ome.

Theorem 4.70 A di
ot game G born by day 3 with out
ome P is in 
anon-

i
al form if and only if





GL ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{0}, {s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}

}

GR ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{0}, {s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}

}

This yields 14 · 14 = 196 non-equivalent di
ot games.

Theorem 4.71 A di
ot game G born by day 3 with out
ome L is in 
anon-

i
al form if and only if





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗ + ∗}, {s, α}, {s, α, ∗+ ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗ + ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, s}

}
, and

GR ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}, {0}, {0, ∗ + ∗}, {0, α}

}

∪
{
{0, ∗2}, {0, ∗ + ∗, α}, {0, ∗ + ∗, ∗2}, {0, α, ∗2}, {0, ∗ + ∗, α, ∗2}

}

∪
{
{0, s, z}, {0, z}, {0, s}, {0, s, ∗ + ∗}, {0, z}, {0, z, α}

}

This yields 40 · 27 = 1080 non-equivalent di
ot games.

The di
ot games born by day 3 with out
ome R in 
anoni
al form are

exa
tly the 
onjugates of those with out
ome L.

Theorem 4.72 A di
ot game G born by day 3 with out
ome N is in 
anon-
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al form of di
ot games

i
al form if and only if either G = 0 or





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗ + ∗}, {s, α}, {s, α, ∗+ ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗+ ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗ + ∗}, {α}, {∗ + ∗, α}

}
⊎
{
{0}, {0, ∗2}

}

∪
{
{0, s, z}, {0, s, ∗ + ∗}, {0, s, α}, {0, s, α, ∗+ ∗}

}

∪
{
{0, z, ∗}, {0, z, α}, {0, z, α, ∗}

}

∪
{
{0, α, s, ∗+ ∗}, {0, ∗, z, α}, {0, s}, {0, α, s}, {0, ∗, z}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, ∗, ∗2}, {0, α, ∗2}, {0, ∗, α, ∗2}

}

GR ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗+ ∗}, {s, α}, {s, α, ∗ + ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗ + ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗ + ∗}, {α}, {∗ + ∗, α}

}
⊎
{
{0}, {0, ∗2}

}

∪
{
{0, s, z}, {0, s, ∗+ ∗}, {0, s, α}, {0, s, α, ∗ + ∗}

}

∪
{
{0, z, ∗}, {0, z, α}, {0, z, α, ∗}

}

∪
{
{0, α, s, ∗+ ∗}, {0, ∗, z, α}, {0, s}, {0, α, s}, {0, ∗, z}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, ∗, ∗2}, {0, α, ∗2}, {0, ∗, α, ∗2}

}

This yields 72 · 72 + 1 = 5185 non-equivalent di
ot games.

Adding the numbers of games with out
ome P, L, R and N , we get:

Theorem 4.73 There are 7541 non-equivalent di
ot games born by day 3.

4.2.4 Sums of di
ots 
an have any out
ome

In the previous subse
tion, we proved that modulo the universe of di
ots,

there were mu
h fewer distinguishable di
ot games under misère 
onvention.

A natural question that arises is whether in this setting, one 
ould sometimes

dedu
e from the out
omes of two games the out
ome of their sum. This

o

urs in normal 
onvention in parti
ular with games with out
ome P. In

this subse
tion, we show that this is not possible with di
ots. We �rst prove

that the misère out
ome of a di
ot is not related to its normal out
ome.

Theorem 4.74 Let A,B be any out
omes in {P,L,R,N}. There exists a

di
ot G with normal out
ome o+(G) = A and misère out
ome o−(G) = B.

Proof. In Figure 4.15, we give for any A,B ∈ {P,L,R,N} a di
ot G su
h

that o+(G) = A and o−(G) = B. �

Theorem 4.75 Let A,B and C be any out
omes in {P,L,R,N}. There

exist two di
ots G1 and G2 su
h that o−(G1) = A, o−(G2) = B and

o−(G1 +G2) = C.
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Normal→
Misère ↓

P L R N

P

L

R

N

Figure 4.15: Normal and misère out
omes of some di
ots

Proof. In Figure 4.16, we give for any A,B, C ∈ {P,L,R,N} two games

G1 and G2 su
h that o−(G1) = A, o−(G2) = B and o−(G1 +G2) = C. �

4.3 A peek at the dead-ending universe

In many 
ombinatorial games, players pla
e pie
es on a board a

ording to

some set of rules. Usually, these rules imply that the board spa
e available

to a player at their turn are a subset of those available on the previous turn.

Among games �tting that des
ription, we 
an mention Col, Domineering,

Hex, or Snort. One 
an also see it as a board where pie
es are removed,

with rules implying that the set of pie
es removable is de
reasing after ea
h

turn. Among games �tting that des
ription, we 
an mention Ha
kenbush,

Nim or any o
tal game, or Timbush. A property all these games share in


ontrast with Partizan Peg Duotaire or Flip the 
oin is that no player


an `open up' moves for themself or for their opponent; in parti
ular, a player

who has no available move at some position will not be able to play for the

rest of the game. This is the property we 
all dead-ending.

We re
all the more formal de�nition of dead-ending: A Left (Right) end

is a dead end if every follower is also a Left (Right) end. A game is said to

be dead-ending if all its end followers are dead ends.

Note that di
ot games, studied in Se
tion 4.2, are all dead-ending, as the

only end follower of a di
ot is 0, whi
h is a dead end.

Example 4.76 Figure 4.17 gives three examples of games that are dead-

ending. The �rst game is a dead end. The se
ond game is dead-ending as its

end followers are either 0 or 1, whi
h are both dead ends. The third game is
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P L
R N

P + P:

+ + + +

+ +

P + L:

+

P +N :

L+ L:

+

L+R:

+ +

+

L+N :

N +N :

Figure 4.16: Sums of di
ots 
an have any out
ome
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Figure 4.17: Some dead-ending positions

Figure 4.18: Some positions that are not dead-ending

a di
ot game, hen
e a dead-ending game. Figure 4.18 gives three examples

of games that are not dead-ending. The �rst game is a Right end that is not

a dead end as Right 
an move from one of Left's options. The se
ond game

is not dead-ending be
ause its Left option is a Left end that is not a dead

end. The third game is not dead-ending be
ause both its Left option and its

Right option are ends that are not dead ends.

In the following, we look at numbers under their normal 
anoni
al form.

Sin
e, among other short
omings, 1 ≮−
E 2 or

1

2
+ 1

2
6≡−

E 1 as games, to avoid


onfusion, we distinguish between the game a and the number a. For the

rest of this se
tion, we use the notation 0 for the game {·|·} too.

In this se
tion, we �nd the misère monoid of dead ends, the misère monoid

of normal-play 
anoni
al form numbers, give their partial order modulo the

dead-ending universe and dis
uss other dead-ending games, in the 
ontext

of equivalen
y to zero modulo the universe of dead-ending games.

4.3.1 Preliminary results

We start by proving the 
losure of the dead-ending universe under the three

aspe
ts we mentioned in the introdu
tion of this 
hapter: it is 
losed under

followers, 
losed under disjun
tive sum, and 
losed under 
onjugates.

Lemma 4.77 If G is dead-ending then every follower of G is dead-ending.
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Proof. If H is a follower of G, then every follower of H is also a follower of

G; thus if G satis�es the de�nition of dead-ending, then so does H. �

Lemma 4.78 If G and H are dead-ending then G+H is dead-ending.

Proof. Any follower of G+H is of the form G′ +H ′
where G′

and H ′
are

(not ne
essarily proper) followers of G and H, respe
tively. If G′ +H ′
is a

Left end, then both G′
and H ′

are Left ends, whi
h must be dead, sin
e G
and H are dead-ending. Thus, any followers G′′

and H ′′
are Left ends, and

so all followers G′′ + H ′′
of G′ + H ′

are Left ends. A symmetri
 argument

holds if G′ +H ′
is a Right end, and so G+H is dead-ending. �

Lemma 4.79 If G is dead-ending, then G is dead-ending.

Proof. Any follower of G is the 
onjugate of a follower of G. If H is an end,

so is H, hen
e assuming H is a follower of G, H is a dead end, and so is H.

�

Under misère play, Left wins any Left end playing �rst as she already has

no move. In a general 
ontext, she might lose playing se
ond, for example

in the game {·|∗}, whi
h is both a Left end and a misère N -position. In the

dead-ending universe, however, Left wins any non-zero Left end playing �rst

or se
ond.

Lemma 4.80 If G 6= 0 is a dead Left end then G ∈ L−
, and if G 6= 0 is a

dead Right end then G ∈ R−
.

Proof. A Left end is always in L−
or N−

. If G is a dead Left end then

any Right option GR
is also a Left end, so Right has no good �rst move.

Similarly, a dead Right end is in R−
. �

In the following of this se
tion, we refer to two game fun
tions de�ned

below, whi
h are well-de�ned for our purpose, namely for numbers and ends.

De�nition 4.81 The left-length of a game G, denoted l(G), is the minimum

number of 
onse
utive Left moves required for Left to rea
h zero in G. The
right-length r(G) of G is the minimum number of 
onse
utive Right moves

required for Right to rea
h zero in G.

In general, the left- and right-length are well-de�ned if G has a non-

alternating path to zero for Left or Right, respe
tively, and if the shortest

of su
h paths is never dominated by another option. The latter 
ondition

ensures l(G) = l(G′) when G ≡− G′
. As suggested above, both of these


onditions are met if G is a (normal-play) 
anoni
al-form number or if G is

an end in E . If l(G) and l(H) are both well-de�ned then l(G+H) is de�ned
and l(G+H) = l(G) + l(H). Similarly, when the right-length is de�ned for

G and H, we have r(G+H) = r(G) + r(H).
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It would be possible to extend these fun
tions to all games by repla
ing

�zero� by �a Left end� for the left-length, and by �a Right end� for the right-

length, but we want to insist here that in the 
ases we use it, the end we

rea
h is zero.

4.3.2 Integers and other dead ends

We �rst look at dead ends, with some fo
us on integers.

Re
all that n denote the game {n − 1|·} when n is positive, where 0 =
{·|·}. Considering two positive integers n and m, their disjun
tive sum has

the same game tree as the integer n + m. This is not true if n is negative

and m positive, and the two games (the disjun
tive sum and the integer) are

not even equivalent in general misère play.

Any integer is an example of a dead end: if n > 0, then Right has no

move in n, and we indu
tively see that he has no move in any follower of n;

similarly, if n < 0, then n is a dead Left end. Thus, the following results for

ends in the dead-ending universe are also true for all integers, modulo E .
Our �rst result shows that when all games in a sum are dead ends, the

out
ome is 
ompletely determined by the left- and right-lengths of the games.

As a sum of Left ends is a Left end and a sum of Right ends is a Right end,

we only 
onsider two games in a sum of ends, one being a Left end and the

other a Right end.

Lemma 4.82 If G is a dead Right end and H is a dead Left end then

o−(G+H) =





N−
if l(G) = r(H)

L−
if l(G) < r(H)

R−
if l(G) > r(H)

Proof. Ea
h player has no 
hoi
e but to play in their own game, and so the

winner will be the player who 
an run out of moves �rst. �

We use Lemma 4.82 to prove the following theorem, whi
h demonstrates

the invertibility of all ends modulo E , even giving the 
orresponding inverse.

Theorem 4.83 If G is a dead end, then G+G ≡−
E 0.

Proof. Assume without loss of generality that G 6= 0 is a dead right

end. Sin
e every follower of a dead end is also a dead end, Lemma 4.2

applies, with S the set of all dead Left and Right ends. It therefore suf-

�
es to show G+G+X ∈ L− ∪ N−
for any Left end X in E. We have

l(G) = r(G) and r(X) > 0, so l(G) 6 r(G) + r(X) = r(G+X), whi
h gives

G+G+X ∈ L− ∪ N−
by Lemma 4.82. �

We immediately get the following 
orollary by re
alling that integers are

dead ends.
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Corollary 4.84 If n is an integer, then n+ n ≡−
E 0.

This implies the following 
orollary about any sum of integers.

Corollary 4.85 If n and m are integers, then n+m ≡−
E n+m.

Re
all that equivalen
y in E implies equivalen
y in all subuniverse of E .
Thus, in the universe of integers alone, every integer keeps its inverse.

Lemma 4.82 shows that when playing a sum of dead ends, both players

aim to exhaust their moves as fast as possible. This suggests that longer

paths to zero would be dominated by shorter paths; in parti
ular, this would

give a total ordering of integers among dead ends, as established in Theo-

rem 4.86 below. Note that this ordering only holds in the subuniverse of the


losure of dead ends, that is the universe of sums of dead ends, and not in

the whole universe E . A
tually, we show right in Theorem 4.87 that distin
t

integers are in
omparable modulo E , just as they are in the general misère

universe.

Theorem 4.86 If n < m ∈ Z, then n >−
m modulo the 
losure of dead

ends.

Proof. By Corollary 4.84, it su�
es to show n + m >− 0 (equivalently,

k > 0 for any negative integer k), modulo the 
losure of dead ends. Let X
be any game in the 
losure of dead ends; then X = Y + Z where Y is a

dead Right end and Z is a dead Left end. Suppose Left wins X playing �rst;

then by Lemma 4.82, l(Y ) 6 r(Z). We need to show Left wins k + X, so

that o−(k +X) > o−(X). Sin
e k is a negative integer, r(k) is de�ned and

r(k) = −k > 0. Thus l(Y ) 6 r(Z) < r(Z) + r(k) = r(Z + k), whi
h gives

k + Y + Z = k+X ∈ L− ∪ N−
, by Lemma 4.82. �

In general, an inequality under misère play between games implies the

same inequality under normal play between the same games [38℄. This is

also true for some spe
i�
 universes, as we have seen with the di
ot universe

in Se
tion 4.2. Theorem 4.86 shows this is not always true for any universe.

We now show that integers, despite being totally ordered in the 
losure

of dead ends, are pairwise in
omparable in the dead-ending universe.

Theorem 4.87 If n 6= m ∈ Z, then n ‖−E m.

Proof. Assume n > m.

De�ne two families of games αk and βk by

α1 = {0|0};αk = {0|αk−1};βk = {αk|αk}.

Note that o−(βk) = N and o−(k + βk) = P for all pos-

itive k. Thus m + m + βn−m ≡−
E βn−m ∈ N−

and
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n + m + βn−m ≡−
E n−m + βn−m ∈ P−

, and m + βn−m witnesses

both n �−
E m and n 
−

E m. �

As integers are pairwise in
omparable, a dead end having several options

might have no E-dominated option. Thus, in the dead-ending universe, there

exists ends that are not integers. However, when restri
ting ourselves to the

subuniverse of the 
losure of dead ends, the ordering given by theorem 4.86

implies that every end redu
es to an integer. This fa
t is presented in the

following lemma.

Lemma 4.88 If G is a dead end then G ≡−
n modulo the 
losure of dead

ends, where n = l(G) if G is a Right end and n = −r(G) if G is a Left end.

Proof. Let G be a dead Right end (the argument for Left ends is sym-

metri
). Assume by indu
tion that every option GLi
of G (ne
essarily a

dead Right end) is equivalent to the integer l(GLi). Modulo dead ends, by

Theorem 4.86, these Left options are totally ordered; thus G = {GL1 |·} for

GL1
with smallest left-length. Then G is the 
anoni
al form of the integer

l(GL1) + 1 = l(G). �

Lemma 4.88 shows that the 
losure of dead ends has pre
isely the same

misère monoid as the 
losure of integers. The game of Domineering on

1 × n and n × 1 board is an instan
e of these universes. We are now able

to 
ompletely des
ribe the misère monoid of the 
losure of dead ends, whi
h

we present in Theorem 4.89.

Theorem 4.89 Under the mapping

G 7→

{
αl(G)

if G is a Right end

α−r(G)
if G is a Left end

,

the misère monoid of the 
losure of dead ends is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with out
ome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}

and total ordering

αn > αm ⇔ n < m.

4.3.3 Numbers

4.3.3.1 The misère monoid of Q2

We now look at all numbers under their normal 
anoni
al form.
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We say a game a is a non-integer number if it is the normal-play 
anoni
al

form of a (non-integer) dyadi
 rational, that is

a =
2∗m+1

2k
=

{
2∗m

2k

∣∣2∗m+2

2k

}
,

with k > 0. The set of all integer and non-integer (
ombinatorial game)

numbers is thus the set of dyadi
 rationals, whi
h we denote by Q2. As we

did for integers previously, we now determine the out
ome of a general sum

of dyadi
 rationals and thereby des
ribe the misère monoid of the 
losure of

numbers.

Note that the sum of two non-integer numbers (even if both are positive)

is not ne
essarily another number. For example,

1

2
+ 1

2
6= 1. We see in the

following that, unlike integers, the set of dyadi
 rationals is not 
losed under

disjun
tive sum even when restri
ted to the dead-ending universe; however,


losure does o

ur when we restri
t to numbers alone.

Lemma 4.92 below, analogous to Lemma 4.82 of the previous se
tion,

shows that the out
ome of a sum of numbers is determined by the left-

and right-lengths of the individual numbers. To prove this, we require

Lemma 4.91, whi
h establishes a relationship between the left- or right-

lengths of numbers and their options; and to prove Lemma 4.91, we need

the following proposition.

Proposition 4.90 If a ∈ Q2\Z then at least one of aRL
and aLR exists, and

either a
L = a

RL
or a

R = a
LR

.

Proof. Let a = 2∗m+1

2k
with k > 0. If m ≡ 0( mod 2) then

a
L =

2∗m

2k
;aR =

2∗m+2

2k
=

2∗m+2

2

2k−1
=

{
2∗m

2

2k−1

∣∣
2∗m+4

2

2k−1

}
,

so a
L = a

RL
. Otherwise, m ≡ 1( mod 2) and then

a
L =

2∗m

2k
=

2∗m

2

2k−1
=

{
2∗m−2

2

2k−1

∣∣
2∗m+2

2

2k−1

}
;aR =

2∗m+2

2k
,

so a
R = a

LR
. �

Note that if a > 0 is a dyadi
 rational, then l(a) = 1 + l(aL), and
if a < 0 is a dyadi
 rational, then r(a) = 1 + r(aR). We also have the

following inequalities for left-lengths of right options and right-lengths of

left options, when a is a non-integer dyadi
 rational.

Lemma 4.91 If a ∈ Q2\Z is positive, then l(aR) 6 l(a); if a is negative,

then r(aL) 6 r(a).
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Proof. Assume a > 0 (the argument for a < 0 is symmetri
). Sin
e a is in


anoni
al form, both a
L
and a

R
are positive numbers. If a

L = a
RL

, then

l(aR) = 1 + l(aRL) = 1 + l(aL) = l(a). Otherwise a
R = a

LR
, by Proposi-

tion 4.90; then a
L
is not an integer be
ause a

LR
exists, so by indu
tion we

obtain l(aR) = l(aLR) 6 l(aL) = l(a)− 1 < l(a). �

We 
an now determine the out
ome of a general sum of numbers, both

integer and non-integer.

Lemma 4.92 If {ai}16i6n and {bi}16i6m are sets of positive and negative

numbers, respe
tively, with k =
∑n

i=1 l(ai)−
∑m

i=1 r(bi), then

o−

(
n∑

i=1

ai +

m∑

i=1

bi

)
=





L−
if k < 0

N−
if k = 0

R−
if k > 0.

Proof. Let G =
∑n

i=1 ai+
∑m

i=1 bi. All followers of G are also of this form,

so assume the result holds for every proper follower of G. Suppose k < 0. If
n = 0 then Left will run out of moves �rst be
ause Left 
annot move last in

any negative number. So assume n > 0. Left moving �rst 
an move in an ai

to redu
e k by one (sin
e l(ai
L) = l(ai) − 1), whi
h is a Left-win position

by indu
tion. If Right moves �rst in an ai then k does not in
rease, sin
e

l(ai
R) 6 l(ai) by Lemma 4.91, so the position is a Left-win by indu
tion; if

Right moves �rst in a bi then k does in
rease by one, but Left 
an respond in

an ai (sin
e n > 0) to bring k down again, leaving another Left-win position,

by indu
tion. Thus G ∈ L−
if k < 0.

The argument for k > 0 is symmetri
. If k = 0 then either G = 0 is

trivially next-win, or both n and m are at least 1 and both players have a

good �rst move to 
hange k in their favour. �

Lemma 4.92 shows that in general misère play, the out
ome of a sum of

numbers is 
ompletely determined by the left-lengths and right-lengths of the

positive and negative 
omponents, respe
tively. From this we 
an 
on
lude

that, modulo the 
losure of 
anoni
al-form numbers, a positive number a is

equivalent to every other number with left-length l(a). In parti
ular, every

positive number a is equivalent to the integer l(a). This is Corollary 4.93

below; together with Theorem 4.96, it will allow us to des
ribe the misère

monoid of 
anoni
al-form numbers.

Corollary 4.93 If a is a number, then

a ≡−
Q2

{
l(a) if a > 0

−r(a) if a < 0

As examples, the dyadi
 rational

3

4
is equivalent to 2, and −11

8
is equiv-

alent to −3, modulo Q2. Note that these equivalen
ies do not hold in the
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larger universe E , as we see in the following that if a 6= b are numbers, then
a 6≡−

E b.

We see then that the 
losure of numbers is isomorphi
 to the 
losure of

just integers; when restri
ted to numbers alone, every non-integer is equiva-

lent to an integer. Thus the misère monoid of numbers, given below, is the

same monoid presented in Theorem 4.89.

Theorem 4.94 Under the mapping

a 7→

{
αl(a)

if a is positive

α−r(a)
if a is negative

,

the misère monoid of the 
losure of 
anoni
al-form dyadi
 rationals is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with out
ome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}.

As with integers, some of the stru
ture found in the number universe is

also present in the larger universe E . We now give a proof that all numbers,

and not just integers, are invertible in the universe of dead-ending games,

having their 
onjugates as inverses. We require the following lemma, an

extension of Lemma 4.92.

Lemma 4.95 If {ai}16i6n and {bi}16i6m are sets of positive and negative

numbers, respe
tively, and

∑n
i=1 l(ai)−

∑m
i=1 r(bi) < 0, then

o−

(
n∑

i=1

ai +
m∑

i=1

bi

)
= L−

for any dead Left end X.

Proof. The argument from Lemma 4.92 works again, sin
e if Right uses his

turn to play in X then Left responds with a move in a1 to de
rease k by 1,
whi
h is a win for Left by indu
tion. �

We 
an now apply Lemma 4.2 to 
on
lude on the invertibility of all

numbers.

Theorem 4.96 If a ∈ Q2, then a+ a ≡−
E 0.

Proof. Without loss of generality we 
an assume a is positive. Sin
e every

follower of a number is also a number, we 
an use Lemma 4.2. That is, it suf-

�
es to show a+ a+X ∈ L− ∪ N−
for any Left end X ∈ E . IfX = 0, this is

true by Lemma 4.92. If X 6= 0, then we 
laim a+ a+X ∈ L−
; assume this
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1

2
−

1

2

Figure 4.19: Canoni
al form of

1

2
and −

1

2
in Ha
kenbush

holds for all followers of a. Left 
an win playing �rst on a+ a+X by mov-

ing to a
L
, sin
e l(aL)− r(a) = l(aL)− l(a) < 0 implies a

L + a+X ∈ L−

by Lemma 4.95. If Right plays �rst in X, then again Left wins by mov-

ing a to a
L
; if Right plays �rst in a, then Left 
opies in a and wins on

a
L + a

L +X ∈ L−
by indu
tion. �

Theorem 4.96 shows that in dead-ending games like Col, Domineering,

et
., any position 
orresponding to a normal-play 
anoni
al-form number

has an additive inverse under misère play. So, for example, the positions in

Figure 4.19 would 
an
el ea
h other in a game of misère Ha
kenbush.

We now look at sums of dead ends with numbers, and start by giving the

misère out
ome of su
h a sum.

Lemma 4.97 If {ai}16i6n is a set of positive numbers and Left ends,

and {bi}16i6m is a set of negative numbers and Right ends, with

k =
∑n

i=1 l(ai)−
∑m

i=1 r(bi), then

o−

(
n∑

i=1

ai +

m∑

i=1

bi

)
=





L−
if k < 0

N−
if k = 0

R−
if k > 0.

Proof. The argument from Lemma 4.92 works again, a move from Right

may in
rease k by at most 1, while a move from Left may de
rease k by at

most 1. �

This gives us the misère monoid of the 
losure of dead ends and numbers.

Theorem 4.98 Under the mapping

G 7→

{
αl(G)

if G is a Left end or the 
anoni
al form of a positive number

α−r(G)
if G is a Right end or the 
anoni
al form of a negative number
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the misère monoid of the 
losure of dead ends and 
anoni
al-form dyadi


rationals is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with out
ome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}.

4.3.3.2 The partial order of numbers modulo E

Previously, we found that all integers were in
omparable in the dead-ending

universe. We will see now that non-integer numbers are a bit more 
oop-

erative; although not totally ordered, we do have a ni
e 
hara
terisation of

the partial order of numbers in the universe E . First note that from Corol-

lary 4.57, we get the following result.

Theorem 4.99 If G >
−
E H, then G >+ H

This gives us the following 
orollary on numbers.

Corollary 4.100 If a, b ∈ Q2 and a > b, then a 
−
E b.

Theorem 4.99 says that if a >
−
E b, then a > b as real numbers (or as

normal-play games). The 
onverse is 
learly not true for integers, by Theo-

rem 4.87; it is also not true for non-integers, sin
e

1

2
+ 1

2
is a misèreN -position

while

3

4
+ 1

2
is a misère R-position, so that

1

2

−

E
3

4
. Theorem 4.103 shows

that the additional stipulation l(a) 6 l(b) is su�
ient for a >
−
E b. To prove

this result we need the following lemmas. As before, non-bold symbols rep-

resent a
tual numbers, so that `a < b' indi
ates inequality of a and b as

rational numbers, and aL means the rational number 
orresponding to the

left-option of the game a in 
anoni
al form. Re
all that if x = {xL|xR} is in
(normal- play) 
anoni
al form then x is the simplest number (i.e., the num-

ber with smallest birthday) su
h that xL < x < xR. Thus, if xL < x, y < xR

and x 6= y, then x is simpler than y.

Lemma 4.101 If a and b are positive numbers su
h that aL < b < a, then
l(aL) < l(b).

Proof. We have aL < b < a < aR, so a must be simpler than

b. Thus bL > aL, sin
e otherwise bL < aL < b < bR would imply

that b is simpler than a
L
, whi
h is simpler than a. Now, if bL = aL

then l(aL) = l(bL) = l(b)− 1 < l(b), and if bL > aL then by indu
tion

aL < bL < b < a gives l(aL) < l(bL) = l(b)− 1 < l(b). �

Lemma 4.101 is now used to prove Lemma 4.102 below, whi
h is needed

for the proof of Theorem 4.103. Note that in the following two arguments we

frequently use the fa
t that, if a >
−
E b, then Left wins the position a+b+X

whenever she wins X ∈ E .
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Lemma 4.102 If a and b are positive numbers su
h that aL < b < a, then
a >−

E b.

Proof. Note that b /∈ Z sin
e there is no integer between aL and a if a is in


anoni
al form. We must show that Left wins a+ b+X whenever she wins

X ∈ E .
Case 1: bR = a.

Left 
an win a+b+X by playing her winning strategy on X. If Right moves

in a+ b to a
R+ b+X ′

, then Left responds to a
R + b

R+X ′ = a
R+a+X ′

,

whi
h she wins by indu
tion sin
e aRL 6 aL (see Proposition 4.90) gives

aRL < a < aR. If Right moves to a + b
R
+ X ′ = b

R + b
R
+ X ′

, with

X ′ ∈ L− ∪P−
(sin
e Left is playing her winning strategy in X), then Left's

response depends on whether bRL = bL or bLR = bR: in the former 
ase,

Left moves to b
RL + b

R
+X ′ = b

L + b
L +X ′ ≡−

E X; in the latter 
ase, Left

moves to b
R + b

L
L
+X ′ = b

R + b
LR +X ′ = b

R + b
R +X ′ ≡−

E X ′
. In either


ase, Left wins as the previous player on X ′ ∈ L− ∪ P−
.

When Left runs out of moves in X, she moves to a
L + b + X ′′

. By

Lemma 4.101 we know l(aL) < l(b), and this gives o−(aL + b +X ′′) = L−

by Lemma 4.95.

Case 2: bR 6= a.
Note that bR 
annot be greater than a, sin
e aL < b < a < aR implies a is

simpler than b, while bL < b < a < bR would imply that b is simpler than

a. So bR < a, and together with aL < b < bR this gives aL < bR < a, whi
h
shows a >

−
E b

R
by indu
tion. Similarly bRL 6 bL < b < bR implies b

R >
−
E b,

by Case 1. Then by transitivity we have a >
−
E b. �

With lemma 4.102, we 
an now prove Theorem 4.103 below. The sym-

metri
 result for negative numbers holds as well.

Theorem 4.103 If a and b are positive numbers su
h that a > b and

l(a) 6 l(b), then a >−
E b.

Proof. By Corollary 4.100, we have a 6≡−
E b, and so it su�
es to show

a >
−
E b. Again we have b /∈ Z. Sin
e a > b, if b > aL, then Lemma 4.102

gives a >
−
E b as required. So assume b 6 aL. Again, let X ∈ E be a game

whi
h Left wins playing �rst; we must show Left wins a+b+X playing �rst.

Left should follow her winning strategy from X. If Right plays to a+b
L+X ′

,

where X ′ ∈ L−∪P−
, then Left responds with a

L+ b
L+X ′

, whi
h she wins

by indu
tion: bL < b 6 aL and l(bL) = l(b) − 1 > l(a) − 1 = l(aL) implies

a
L >−

E b
L
.

If Right plays to a
R + b + X ′

(assuming this move exists), then

Left's response is a
RL + b + X ′

if aRL > b, or a
R + b

R + X ′
if

aRL 6 b. In the �rst 
ase, Left wins by indu
tion be
ause aRL > b and

l(aRL) = l(aR)− 1 6 l(a)− 1 < l(b) implies a
RL >−

E b. In the latter 
ase,
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note �rst that in fa
t aRL 6= b, sin
e we have already seen that as games

they have di�erent left-lengths. Then we see aRL < b < a < aR < aRR
,

whi
h shows a
R
must be simpler than b. This gives bR 6 aR, as otherwise

bL < b < a < aR < bR would imply that b is simpler than a
R
. If bR = aR,

then b
R = a

R
, and if bR < aR, then we 
an apply Lemma 4.102 to 
on
lude

that a
R >−

E b
R
. In either 
ase, Left wins a

R + b
R +X ′

with X ′ ∈ L− ∪ P−

as the se
ond player.

Finally, if Left runs out of moves in X, then she moves to a
L + b+X ′′

where X ′′
is a dead Left end; then Left wins by Lemma 4.95 be
ause

l(aL) < l(a) 6 l(b) = r(b). �

Corollary 4.104 For positive numbers a, b ∈ Q2, a >−
E b if and only if

a > b and l(a) 6 l(b).

Proof. We need only prove the 
onverse of Theorem 4.103. Suppose a > b
and l(a) > l(b); then by Theorem 4.99, it 
annot be that a 6

−
E b, so we need

only show a �−
E b. We have o−(b+ b) = N , while o−(a + b) = R, sin
e in

isolation the latter sum is equivalent to the positive integer l(a) − l(b), by
Theorem 4.94. Thus a �−

E b. �

To 
ompletely des
ribe the partial order of numbers within E , it remains

to 
onsider the 
omparability of a and b when a > 0 and b < 0 (or, sym-

metri
ally, when a < 0 and b > 0). As before, by Corollary 4.100, we 
annot

have a 6
−
E b, and the same argument as above (b+b ∈ N−

and a+b ∈ R−
)

shows a � b. The results on the order between numbers are summarised

below.

Theorem 4.105 The partial order of Q2, modulo E, is given by

a ≡−
E b if a = b,

a >−
E b if 0 < a < b and l(a) 6 l(b)

or b < a < 0 and r(b) 6 r(a),
a ‖−E b otherwise.

4.3.4 Zeros in the dead-ending universe

We have found that integer and non-integer numbers, as well as all ends,

satisfy G+G ≡−
E 0. It is not the 
ase that every game in E has its 
onjugate

as inverse; for example, ∗ + ∗ 6≡−
E 0, although the equivalen
e does hold in

the universe of di
ot games. Milley [26℄ showed that no di
ot game born on

day 2 is its 
onjugate inverse modulo the dead-ending universe, despite six

out of the seven of them being their 
onjugate inverses in the di
ot universe.

The following lemma des
ribes an in�nite family of games that are not

invertible in the universe of dead-ending games.

Lemma 4.106 If G = {n1, . . . ,nk|m1, . . . ,mℓ}, with ea
h ni,mi ∈ N,
then G+G 6≡−

E 0.
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GLk GL2 GL1 GR1 GR2 GRℓ

Figure 4.20: An in�nite family of games equivalent to zero modulo E

Proof. Let X = {n1, . . . ,nk,m1, . . . ,mℓ|·} ∈ R−
. We des
ribe a winning

strategy for Left playing se
ond in the game G+G+X. Right has no �rst

move in X, so Right's move is of the form G+ni+X ormi+G+X. Left 
an

respond by moving X to ni or mi, respe
tively, leaving a game equivalent to

G or G modulo E . Now Right plays there to a non-positive integer, whi
h

as a Right end must be in L−
or N−

. �

We 
on
lude with an in�nite family of games that are equivalent to zero

in the dead-ending universe, whi
h are not of the form G + G for some G,
apart from {1|1} = 1+ 1.

Theorem 4.107 If G is a dead-ending game su
h that every GL
has a Right

option to 0 and at least one GL
, say GL1

, is a Left end, and every GR
has a

Left option to 0 and at least one GR
, say GR1

, is a Right end, then G ≡−
E 0.

Proof. Let X be any game in E and suppose Left wins X. Then Left wins

G + X by following her strategy in X. If Right plays in G then he moves

to some GR + X ′
from a position G + X ′

with X ′ ∈ L− ∪ P−
; Left 
an

respond to 0 + X ′
and win as the se
ond player. If both players ignore G

then eventually Left runs out of moves in X and plays to GL1 +X ′′
, where

X ′′
is a Left end. But GL1

is a non-zero Left end, so the sum is a Left-win

by Lemma 4.80. �

Example 4.108 Figure 4.20 illustrates the games 
onsidered in Theo-

rem 4.107. Dashed lines indi
ate that options are present a natural number

of times, in
luding 0, and dashed verti
es indi
ate there might be a tree of

any size from this vertex, as long as the whole game stays dead-ending.

4.4 Perspe
tives

In this 
hapter, we looked at parti
ular games, and took a step into the theory

of misère quotients introdu
ed by Plambe
k and Siegel, with the universe of

di
ot games and the dead-ending universe.

In the games we studied, results are mixed.
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tives

The misère version of Geography is pspa
e 
omplete even for some

`small' 
lass of graphs, but even if the problem Edge Geography on undi-

re
ted graph is pspa
e 
omplete in its normal version on general graphs,

there exists an algorithm that solves it in the restri
ted 
ase of bipartite

undire
ted graphs [18℄.

Question 4.109 What is the 
omplexity of �nding the misère out
ome of

any Vertex Geography position on bipartite undire
ted graphs?

In normal version, our results on VertexNim extended to Sto
kman's

version of Vertex NimG, where a vertex of weight 0 is not removed. This

does not seem true in its misère version.

As all our results under the misère 
onvention are dire
tly dedu
ed from

our results under the normal 
onvention, we make the following 
onje
ture.

Conje
ture 4.110 The 
omplexity of �nding the misère out
ome of any

VertexNim position on dire
ted graphs with a token on a vertex is the same

as the 
omplexity of �nding the normal out
ome of any VertexNim position

on dire
ted graphs with a token on a vertex.

On Timber, we only redu
ed the problem to oriented forests and found

the out
ome of any oriented path. As Timber is not a game that separates

in several 
omponents, being able to �nd the out
ome of any 
onne
ted


omponent would already be interesting.

Question 4.111 Is there a polynomial-time algorithm that gives the misère

out
ome of any Timber position on 
onne
ted dire
ted graphs?

On Timbush, we only redu
ed the problem to oriented forests, but the

problem is an extension of Timber, on whi
h we do not know mu
h.

On Toppling Dominoes, we gave the misère out
ome of a single row,

and found the misère monoid of Toppling Dominoes positions without

grey dominoes. Unexpe
tedly, the problem seems easier than its normal

version. Hen
e, we ask the following question.

Question 4.112 Can one �nd a polynomial-time algorithm that gives the

misère out
ome of any Toppling Dominoes position (on several rows)?

On Col, we gave the misère out
ome of any grey subdivided star.

In the 
ase of di
ot games, we de�ned a redu
ed form and proved it

was unique, before using this result to 
ount the number of di
ot games in


anoni
al form born by day 3.
One problem of this 
anoni
al form is that one needs �rst to dete
t D-

dominated and D-reversible options to be able to delete or bypass them,

whi
h we do not know whether it is solvable in polynomial time. Hen
e, we

have the following question.
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Question 4.113 What is the 
omplexity of 
omputing the 
anoni
al form of

any di
ot?

It would also be interesting to �nd a 
anoni
al form for other universes.

Some of the proofs presented in that se
tion were true for any universe, most

others would need the universe to be 
losed by adjoint, but the hard 
ase

to adapt seems to be the 
ase of reversible options through any end. The

universe of dead-ending games is 
losed by adjoint, and though we found

some way to deal with reversible options through dead ends, it was not

enough to give a unique form for ea
h equivalent 
lass modulo the dead-

ending universe.

Question 4.114 Is there a natural way to de�ne a 
anoni
al form for dead-

ending games?

We know we 
an still bypass most reversible options thanks to the fol-

lowing lemma.

Lemma 4.115 Let U be a universe and G be a game. Suppose GL1
is

U-reversible through GL1R1
, su
h that GL1R1

is not a Left end. Let G′
be

the game obtained by bypassing GL1
:

G′ = {(GL1R1)L, GL \ {GL1}|GR} .

Then G ≡−
U G′

.

The problem is to deal with options reversible through ends.

In the 
ase of dead-ending games, we found the misère monoid of ends

and numbers, and gave the partial order of numbers modulo the dead-ending

universe.

The original motivation of studying dead-ending games is to give a nat-

ural universe for the spe
i�
 games we mentioned (Col, Domineering,

Ha
kenbush. . . ), games where the players pla
e pie
es on a board never

to remove them, that we 
all pla
ement games. A formal de�nition of a

pla
ement game is the following.

De�nition 4.116 De�ne a game with a set M = ML ∪ MR
of Left and

Right moves and a forbidding fun
tion φ : 2M → 2M su
h that we have for

any subset X of 2M,

⋃
Y⊂X φ(Y ) ⊆ φ(X) and X ⊆ φ(X) as follows: a posi-

tion is a subset of M; from a position M , Left 
an move to M ∪ {m} for any

m ∈ ML\φ(M), and Right 
an move to M ∪ {m} for any m ∈ MR \ φ(M).
Then a game G is a pla
ement game if there exist a set M, a fun
tion φ and

a subset M of M su
h that G is the position obtained from M and φ on the

subset M as de�ned above, modulo the multipli
ity of options.
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Figure 4.21: A dead-ending game whi
h is not a pla
ement game

Being a pla
ement game is stronger than being a dead-ending game. For

example, the position on Figure 4.21 is a dead-ending game, and even a di
ot

game, whi
h is not a pla
ement game. We 
an a
tually prove that if you

de�ne re
ursively the fun
tion rb su
h that rb(G) = 0 if G is a Right end

and rb(G) = 1+maxGR∈GR rb(GR), a pla
ement game satis�es the 
ondition

rb(GL) 6 rb(G) for any Left option GL
of G (whi
h is not the 
ase for the

position on Figure 4.21).

Among properties we naturally 
onsider, the universe of pla
ement games

is 
losed under followers, disjun
tive sum and 
onjugates.

Question 4.117 What more 
an be said about pla
ement games?

We 
an also look on a more general 
ontext of misère games.

In all examples of games we have seen having an inverse, the 
onjugate

of the game is an inverse. A natural question is: is this always true? Milley

[26℄ proved it is not, giving an example in a universe whi
h is not 
losed

under 
onjugates. In [34℄, Plambe
k and Siegel gives an example of an im-

partial universe, disproving even the 
ase where the universe is 
losed under

followers, disjun
tive sum and 
onjugates. This example was not highlighted

in the paper as it is prior to the question. Having some answer for the above

question, we now ask the following question.

Question 4.118 For whi
h universes U do we have G + H ≡−
U 0 implies

H ≡−
U G?

We know it is true for the universe G of all games, as the only way to

have G+G ≡−
U 0 is to have G = 0, and we have examples of universes where

it is not, but even without asking for a 
hara
terisation, it would be ni
e to

know if universes su
h as impartial games, di
ot games, dead-ending games,

or even pla
ement games have this property.

Another fa
t one may noti
e in this 
hapter is that in all universes we pre-

sented where there is no P-position, su
h as the universe of LR-Toppling
Dominoes and the 
losure of dead-ends and numbers, all elements are in-

vertible, sometimes even in a bigger universe. This was 
onje
tured by Milley.
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Conje
ture 4.119 (Milley (personal 
ommuni
ation)) In any uni-

verse U 
losed under followers, disjun
tive sum and 
onjugates, if U 
ontains

no P-position, then every element of U has an inverse modulo U in U .

For example, the out
ome of a position in the 
losure of LR-Toppling
Dominoes, dead-ends and 
anoni
al-form dyadi
 rationals is given by the

following proposition.

Proposition 4.120 If G is an LR-Toppling Dominoes posi-

tion, {ai}16i6n is a set of positive numbers and Left ends, and

{bi}16i6m is a set of negative numbers and Right ends, with

k = ltd(G) − rtd(G) +
∑n

i=1 l(ai)−
∑m

i=1 r(bi), then

o−

(
G+

n∑

i=1

ai +

m∑

i=1

bi

)
=





L−
if k < 0

N−
if k = 0

R−
if k > 0.

This gives a misère monoid isomorphi
 to both the misère monoid of

LR-Toppling Dominoes positions, and to the monoid of the 
losure of

dead ends and 
anoni
al-form dyadi
 rationals, whi
h raises the following


onje
ture.

Conje
ture 4.121 If U and U ′
are two universes 
losed under followers,

disjun
tive sum and 
onjugates having misère monoids isomorphi
 to MZ,

then the misère monoid of the 
losure of positions of U and U ′
is also iso-

morphi
 to MZ.

This might even be strengthened as follows.

Conje
ture 4.122 If U and U ′
are two universes 
losed under followers,

disjun
tive sum and 
onjugates having isomorphi
 misère monoids, then the

misère monoid of the 
losure of positions of U and U ′
is also isomorphi
 to

their 
ommon misère monoid.

In the last two 
onje
tures, we 
onsider the out
ome partition as part of

the misère monoid, that is we 
onsider they should be isomorphi
 as well.
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Chapter 5

Domination Game

The domination game is not a 
ombinatorial game. Nevertheless, some

tools used in its study are quite similar to some 
ombinatorial tools. For

example, the imagination strategy method proposed in [7℄ is similar to the

stealing strategy argument stating the player having a winning strategy in

Hex. We here show another parallel by 
onsidering the game on a non-


onne
ted graph as a disjun
tive sum.

Re
all that a vertex is said to dominate itself and its neighbours, and that

a set of verti
es is a dominating set if every vertex of the graph is dominated

by some vertex in the set.

The Domination game was introdu
ed by Bre²ar, Klavºar and Rall in

[7℄. It is played on a �nite graph G by two players, Dominator and Staller.

They alternate turns in 
hoosing a vertex that dominates at least one new

vertex. The game ends when there is no possible move anymmore, that is

when the 
hosen verti
es form a dominating set. Dominator's goal is that

the game �nishes in as few moves as possible while Staller tries to keep the

game going as long as she 
an. There are two possible variants of the game,

depending on who starts the game. In Game 1, Dominator starts, while in

Game 2, Staller starts. The game domination number, denoted by γg(G),
is the total number of 
hosen verti
es in Game 1 when both players play

optimally. Similarly, the Staller-start game domination number γ′g(G) is the
total number of 
hosen verti
es in Game 2 when both players play optimally.

Variants of the game where one player is allowed to pass a move on
e

were already 
onsidered in [20℄ (and possibly elsewhere). In the Dominator-

pass game, Dominator is allowed to pass one move, while in the Staller-pass

game, Staller is. We denote respe
tively by γg
dp

and γ′g
dp

the size of the set

of 
hosen verti
es in game 1 and 2 where Dominator is allowed to pass one

move, and by γg
sp

and γ′g
sp

the size of the set of 
hosen verti
es in game 1

and 2 where Staller is allowed to pass a move. Note that passing does not


ount as a move in the game domination number, as the value is the number

of 
hosen verti
es.

We say that a graph G realises a pair (k, ℓ) ∈ N × N if γg(G) = k and

γ′g(G) = ℓ. For a graph G = (V,E) and a subset of verti
es S ⊆ V , we

denote by G|S the partially dominated graph G where the verti
es of S are

dominated. Kinnersley, West and Zamani [20℄ proved what is known as the


ontinuation prin
iple:
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Theorem 5.1 (Kinnersley et al[20℄) [Continuation Prin
iple℄ Let G
be a graph and A,B ⊆ V (G). If B ⊆ A, then γg(G|B) > γg(G|A) and

γ′g(G|B) 6 γ′g(G|A).

This very useful prin
iple to prove inequalities involving γg and γ′g has

the following 
orollary, part of whi
h was already proved in [7℄.

Theorem 5.2 (Bre²ar et al. [7℄, Kinnersley et al. [20℄) For any

graph G, |γg(G)− γ′g(G)| 6 1

As a 
onsequen
e of this theorem, we have that realisable pairs are ne
-

essarily of the form (k, k+1), (k, k) and (k, k−1). It is known that all these

pairs are indeed realisable, examples of graphs of ea
h of these three types

are given in [7, 8, 20, 21℄. We say a partially dominated graph G is a (k,+)
(resp. (k,=), (k,−)) if γg(G) = k and γ′g(G) = k + 1 (resp. γg(G) = k and

γ′g(G) = k, γg(G) = k and γ′g(G) = k−1). Additionally, we say that a graph

G is a plus (resp. equal, minus) if G is (k,+) (resp. (k,=), (k,−)) for
some k > 1.

Observation 5.3 If a partially dominated graph G|S is a (k,−), then for

any legal move u in G|S, the graph G|(S ∪N [u]) is a (k − 2,+).

Proof. Let G|S be a (k,−) and u be any legal move in G|S. By de�nition

of the game domination number, we have k = γg(G|S) 6 1+γ′g(G|S∪N [u]).
Similarly, k − 1 = γ′g(G|S) > 1 + γg(G|S ∪ N [u]). By Theorem 5.2, we get

that

k − 1 6 γ′g(G|S ∪N [u]) 6 γg(G|S ∪N [u]) + 1 6 k − 1

and so equality holds throughout this inequality 
hain. Thus G|(S ∪N [u] is
a (k − 2,+), as required. �

We say that a graph G is a no-minus graph if for any subset of verti
es S,
γg(G|S) 6 γ′g(G|S). Intuitively, it seems that no player getd any advantage

to pass in a no-minus graph.

In this 
hapter, we are interested in no-minus graphs and possible reali-

sations of unions of graphs. In Se
tion 5.1, we prove that tri-split graphs and

dually 
hordal graphs are no-minus graphs. In Se
tion 5.2, we give bounds

on the game domination number of the union of two graphs, given that we

know the game domination number of ea
h 
omponent of the union, �rst

when both graphs are no-minus graphs, then in the general 
ase.

The results presented in this 
hapter are a joint work with Paul Dorbe


and Ga²per Ko²mrlj [13℄.

5.1 About no-minus graphs . . . . . . . . . . . . . . . 169
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5.1 About no-minus graphs

In this se
tion, we 
onsider no-minus graphs.

To begin with no-minus graphs, we �rst need to prove what we 
laimed

was the intuitive de�nition of a no-minus, i.e. that it is not helpful to be

allowed to pass in su
h games. In [7℄, Bre²ar et al. proved the following in

general:

Lemma 5.4 ([7℄) Let G be a graph. We have γg(G) ≤ γspg (G) ≤ γg(G) + 1

and γg(G)− 1 ≤ γdpg (G) ≤ γg(G).

Though the authors of [7℄ did not prove it, the exa
t same proof te
h-

nique (using the imagination strategy) 
an give the following inequalities,

for partially dominated graphs and for both games 1 and 2.

Lemma 5.5 Let G be a graph, S a subset of verti
es of G. We have

γg(G|S) ≤ γspg (G|S) ≤ γg(G|S) + 1 ,

γ′g(G|S) ≤ γ′spg (G|S) ≤ γ′g(G|S) + 1 ,

γg(G|S) − 1 ≤ γdpg (G|S) ≤ γg(G|S) ,

γ′g(G|S) − 1 ≤ γ′dpg (G|S) ≤ γ′g(G|S) .

We now prove the following proposition on no-minus graphs, showing

that being allowed to pass is not helpful in su
h graphs.

Proposition 5.6 If G is a no-minus graph, then

γg
sp(G) = γg

dp(G) = γg(G) and γ′g
sp(G) = γ′g

dp(G) = γ′g(G).

Proof. First, note that a player would pass a move only if it bene-

�ts them, so for any graph G (even if not a no-minus graph), we have

γg
dp(G) 6 γg(G) 6 γg

sp(G) and γ′g
dp(G) 6 γ′g(G) 6 γ′g

sp(G). Now, suppose

a no-minus graph G satis�es γg
dp(G) < γg(G). We use the imagination strat-

egy to rea
h a 
ontradi
tion.

Consider a normal Dominator-start game played on G where Dominator

imagines he is playing a Dominator-pass game, while Staller plays optimally

in the normal game. Sin
e γg
dp(G) < γg(G), the strategy of Dominator
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in
ludes passing a move at some point, say after x moves have been played.

Let S be the set of dominated verti
es at that point. Sin
e Dominator played

optimally the Dominator-pass domination game (but not ne
essarily Staller),

if he was allowed to pass that move the game should end in no more than

γg
dp(G). We thus have the following inequality:

x+ γ′g(G|S) 6 γg
dp(G)

Now, remark that sin
e Staller played optimally in the normal game, we have

that

x+ γg(G|S) > γg(G)

Adding the fa
t that G is a no-minus, so that γg(G|S) 6 γ′g(G|S), we rea
h
the following 
ontradi
tion:

γg(G) 6 x+ γg(G|S) 6 x+ γ′g(G|S) 6 γg
dp(G) < γg(G) .

Similar arguments 
omplete the proof for the Staller-pass and/or Staller-

start games. �

The next lemma also expresses an early property of no-minus graphs. It

is an extension of a result on forests from [20℄, the proof is about the same.

Lemma 5.7 Let G be a graph, S ⊆ V (G), su
h that for any S′ ⊇ S,
γg(G|S′) 6 γ′g(G|S′). Then we have γg(G ∪K1|S) > γg(G|S) + 1 and

γ′g(G ∪K1|S) > γ′g(G|S) + 1.

Proof. Given a graph G and a set S satisfying the hypothesis, we use

indu
tion on the number of verti
es in V (G) \S. If V (G) \ S = ∅, the 
laim
is trivial. Suppose now that S  V (G) and that the 
laim is true for every

G|S′
with S  S′

.

Consider �rst game 1. Let v be an optimal �rst move for

Dominator in the game G ∪ K1|S. If v is the added ver-

tex, then γg(G ∪K1|S) = γ′g(G|S) + 1 > γg(G|S) + 1 by our assumption

on G|S, and the inequality follows. Otherwise, let S′ = S ∪N [v].
By the 
hoi
e of the move and indu
tion hypothesis, we have

γg(G ∪K1|S) = 1 + γ′g(G ∪K1|S
′) > 1 + γ′g(G|S′) + 1. Sin
e v is not ne
-

essarily an optimal �rst move for Dominator in the game on G|S, we also

have that γg(G|S) 6 1 + γ′g(G|S′) and the result follows.

Consider now game 2. Let w be an optimal �rst move for Staller in

the game G|S, and let S′′ = S ∪N [w]. By optimality of this move, we

have γ′g(G|S) = 1 + γg(G|S′′). Playing also w in G ∪ K1|S, Staller gets

γ′g(G ∪K1|S) > 1 + γg(G ∪K1|S
′′) > 2 + γg(G|S′′) by indu
tion hypothe-

sis. The required inequality follows. �

It is known that forests are no-minus graphs [20℄. We now propose two

other families of graphs that are no-minus. The �rst is the family of tri-split
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graphs, a generalisation of split graphs and pseudo-split graph (ex
ept it

does not 
ontain C5) inspired by [23℄. A graph is tri-split if its set of verti
es


an be partitioned into three disjoint sets A 6= ∅, B and C with the following

properties:

∀u ∈ A, ∀v ∈ A ∪ C : uv ∈ E(G),

∀u ∈ B, ∀v ∈ B ∪ C : uv /∈ E(G).

We prove the following.

Theorem 5.8 Conne
ted tri-split graphs are no-minus graphs.

Proof. Let G be a tri-split graph with the 
orresponding partition (A,B,C),
let S ⊆ V (G) be a subset of dominated verti
es, and 
onsider the game

played on G|S. If the game on G|S ends in at most two moves, then 
learly

γg(G|S) 6 γ′g(G|S). From now on, we assume that γg(G) > 3.
Observe that Dominator has an optimal strategy playing only in A (in

both game 1 and game 2). Indeed, any vertex u in B dominates only itself

and some vertex in A (at least one by 
onne
tivity). Any neighbour v of u
in A dominates all of A and v, so is a better move than u for Dominator

by the 
ontinuation prin
iple. Similarly, the neighbourhood of any vertex in

C is in
luded in the neighbourhood of any vertex in A. So we now assume

Dominator only plays in A in the rest of the proof.

Suppose we know an optimal strategy on Game 2 for Dominator, we

propose an (imagination) strategy for Game 1 guaranteeing it will �nish no

later than Game 2. Let Dominator imagine a �rst move v0 ∈ B ∪ C from

Staller and play the game on G|S as if playing in G|(S ∪N [v0]). Staller plays
optimally on G|S not knowing about Dominator's imagined game. Note that

after Dominator's �rst move, the only di�eren
e between the imagined game

and the real game is that v0 is dominated in the �rst but possibly not in the

se
ond. Indeed, all the neighbours of v0 belong to A∪C, whi
h are dominated

by Dominator's �rst move (in A by our assumption). Therefore, any move

played by Dominator in his imagined game is legal in the real game, though

Staller may eventually play a move in the real game that is illegal in the

imagined game, provided it newly dominates only v0. If she does so and the

game is not �nished yet, then Dominator imagines she played any legal move

v1 in B instead and 
ontinues. This may happen again, leading Dominator

to imagine a move v2 and so on. Denote by vi the last su
h vertex before

the game ends, we thus have that vi is the only vertex possibly dominated

in the imagined game but not in the real game.

Assume now that the imagined game is just �nished. Denote by kI the

total number of moves in this imagined game. Note that the imagined game

looks like a Game 2 where Dominator played optimally but possibly not

Staller. We thus have that kI 6 γ′g(G|S). At that point, either the real

game is �nished or only vi is not yet dominated. So the real game �nishes
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at latest with the next move of any player, and the number of moves in the

real game kR satis�es kR 6 kI − 1 + 1. Moreover, in the real game, Staller

played optimally but possibly not Dominator, so kR > γg(G|S). We 
an

now 
on
lude the proof bringing together all these inequalities into

γg(G|S) 6 kR 6 kI 6 γ′g(G|S) .

�

The se
ond family of graphs we prove to be no-minus is the family of

dually 
hordal graphs, see [6℄. Let G be a graph, v one of its verti
es. A

vertex u in N [v] is a maximum neighbour of v if for all w ∈ N [v], we have

N [w] ⊆ N [u]. A vertex ordering v1, . . . , vn is a maximum neighbourhood

ordering if for ea
h i 6 n, vi has a maximum neighbour in G[{v1, . . . , vi}]. A
graph is dually 
hordal if it has a maximum neighbourhood ordering. Note

that forests and interval graphs are dually 
hordal [35℄.

Theorem 5.9 Dually 
hordal graphs are no-minus graphs.

Proof. We prove the result by indu
tion on the number of non-dominated

verti
es. Let G be a dually 
hordal graph with v1, . . . , vn a maximum neigh-

bourhood ordering of V (G). Let S ⊆ V (G) be a subset of dominated verti
es

and denote by j the largest index su
h that vj is not in S. We suppose by

way of 
ontradi
tion that G|S is a (k,−), note that ne
essarily k > 3. Let vi
be a maximum neighbour of vj in G[{v1, . . . , vj}]. Let u be an optimal move

for Staller in G|(S∪N [vi]) and let S′ = S∪N [vi]∪N [u]. By Observation 5.3,

G|(S ∪N [u]) and G|(S ∪N [vi]) are both (k−2,+), so γg(G|S∪N [u]) = k−2
and γ′g(G|S ∪N [vi]) = k − 1. By optimality of u, we get that

k − 1 = γ′g(G|S ∪N [vi]) = γg(G|S′) + 1 .

The vertex u is not a neighbour of vj , or its 
losed neighbourhood in

G[{v1, . . . , vj}] would be in
luded in N [vi] and {vj+1, . . . , vn} ⊆ S, so playing
u would not be legal in G|(S ∪N [vi]). Therefore, by 
ontinuation prin
iple

(Theorem 5.1),

γg(G|S ∪N [u]) > γg(G|S′ \ {vj}) .

Moreover, be
ause all verti
es at distan
e at most 2 from vj are dominated

in G|S′
, we get that γg(G|S′ \ {vj}) = γg(G ∪K1|S

′). Now using indu
tion

hypothesis to apply Lemma 5.7, we get

γg(G|S′ \ {vj}) > γg(G|S′) + 1 .

We thus 
on
lude that

k − 2 = γg(G|S ∪N [u]) > γg(G|S′ \ {vj}) > γg(G|S′) + 1 = k − 1,

whi
h leads to a 
ontradi
tion. Therefore, G|S is not a minus and this


on
ludes the proof. �
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5.2 The domination game played on unions of

graphs

5.2.1 Union of no-minus graphs

In this subse
tion, we are interested in the possible values that the union of

two no-minus graphs may realise, a

ording to the realisations of its 
om-

ponents. We in parti
ular show that the union of two no-minus graphs is

always a no-minus graph.

We �rst prove a very general result that will allow us to 
ompute almost

all the bounds obtained later.

Theorem 5.10 Let G1|S and G2|S
′
be two partially dominated graphs and

x be any legal move in G1|S. We have

γg(G1 ∪G2|S ∪ S′) > min

(
γg(G1|S) + γg

dp(G2|S
′)

γg
dp(G1|S) + γg(G2|S

′)

)
(5.1)

γg(G1 ∪G2|S ∪ S′) 6 1 + max

(
γ′g(G1|S ∪N [x]) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S ∪N [x]) + γ′g(G2|S

′)

)
(5.2)

γ′g(G1 ∪G2|S ∪ S′) 6 max

(
γ′g(G1|S) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S) + γ′g(G2|S

′)

)
(5.3)

γ′g(G1 ∪G2|S ∪ S′) > 1 + min

(
γg(G1|S ∪N [x]) + γg

dp(G2|S
′)

γg
dp(G1|S ∪N [x]) + γg(G2|S

′)

)
(5.4)

Proof. To prove all these bounds, we simply des
ribe what a player 
an do

by using a strategy of following, i.e. always answering to his opponent moves

in the same graph if possible.

Let us �rst 
onsider Game 1 in G1 ∪G2|S ∪ S′
and what happens when

Staller adopts the strategy of following. Assume �rst that the game in G1

�nishes before the game in G2. Then Staller is sure with her strategy that

the number of moves in G1 is at least γg(G1|S). However, when G1 �n-

ishes, Staller may be for
ed to play in G2 if Dominator played the �nal

move in G1. This situation somehow allows Dominator to pass on
e in G2,

but no more. So we 
an ensure that the number of moves in G2 is no

less that γg
dp(G2|S

′). Thus, in that 
ase, the total number of moves is no

less than γg(G1|S) + γg
dp(G2|S

′). If on the other hand the game in G2 �n-

ishes �rst, we get similarly that the number of moves is then no less than

γg
dp(G1|S) + γg(G2|S

′). Sin
e she does not de
ide whi
h game �nishes �rst,

Staller 
an guarantee that

γg(G1∪G2|S ∪S′) > min
(
γg(G1|S)+γg

dp(G2|S
′), γg

dp(G1|S)+γg(G2|S
′)
)
.

The same arguments in Game 2 with Dominator adopting the strategy of

following ensures that

γ′g(G1∪G2|S∪S′) 6 max
(
γ′g(G1|S)+γ′g

sp
(G2|S

′), γ′g
sp
(G1|S)+γ′g(G2|S

′)
)
.
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Let us 
ome ba
k to Game 1. Suppose Dominator plays some vertex x in

V (G1) and then adopts the strategy of following. Then he 
an ensure that

γg(G1 ∪G2|S ∪ S′) 6 1 + γ′g(G1 ∪G2|S ∪ S′ ∪NG1
[x]) and thus that

γg(G1 ∪G2|S ∪ S′) 6 1 + max

(
γ′g(G1|S ∪N [x]) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S ∪N [x]) + γ′g(G2|S

′)

)
.

The same is true for Staller in Game 2 to obtain Inequality (5.4). �

In the 
ase of the union of two no-minus graphs, these inequalities allow

us to give rather pre
ise bounds on the possible values realised by the union.

The �rst 
ase is when one of the 
omponents is an equal.

Theorem 5.11 Let G1|S and G2|S′
be partially dominated no-minus

graphs. If G1|S is a (k,=) and G2|S
′
is a (ℓ, ⋆) (with ⋆ ∈ {=,+}), then

the disjoint union G1 ∪G2|S ∪ S′
is a (k + ℓ, ⋆).

Proof. We use inequalities from Theorem 5.10. Note that sin
e G1 and G2

are no-minus graphs, we 
an apply Proposition 5.6 and get that the Staller-

pass and Dominator-pass games on any partially dominated G1 and G2 is

the same as the 
orresponding game.

For Game 1, let Dominator 
hoose an optimal move x in G2|S
′
, for

whi
h we get γ′g(G2|S
′ ∪N [x]) = ℓ− 1. Applying Inequalities (5.1) and (5.2)

inter
hanging the role of G1 and G2, we then get that

k + ℓ 6 γg(G1 ∪G2|S ∪ S′) 6 1 + k + ℓ− 1 .

For Game 2, Staller 
an also 
hoose an optimal move x in G2|S
′
for whi
h

γg(G2|S
′ ∪N [x]) = γ′g(G2|S

′)− 1, and applying Inequalities (5.3) and (5.4),

we get that γ′g(G1 ∪G2|S ∪ S′) = γ′g(G1|S) + γ′g(G2|S
′). �

We are now left with the 
ase where both 
omponents are plus.

Theorem 5.12 Let G1|S and G2|S
′
be partially dominated no-minus graphs

su
h that G1|S is (k,+) and G2|S
′
is (ℓ,+). Then

k + ℓ 6 γg(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 1,

k + ℓ+ 1 6 γ′g(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 2.

In addition, all bounds are tight.

Proof. Similarly as in the proof before, taking x an optimal �rst move for

Dominator in G1|S and applying Inequalities (5.1) and (5.2), we get that

k + ℓ 6 γg(G1 ∪ G2|S ∪ S′) 6 k + ℓ+ 1. Also, taking for x an optimal �rst

move for Staller in G1|S and applying Inequalities (5.3) and (5.4), we get

that k + ℓ+ 1 6 γ′g(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 2.
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a

T3

c
d

e

b

T4 P3 leg

Figure 5.1: The trees T3 and T4, the graph P3 and the leg

We now propose examples showing that these bounds are tight. Denote

by Ti the tree made of a root vertex r of degree i+ 1 adja
ent to two leaves

and i − 1 paths of length 2. Figure 5.1 shows the trees T2 and T3. Note

that the domination number of Ti is γ(Ti) = i. For the domination game,

Ti realises (i, i + 1). We 
laim that for any k, ℓ, γg(Tk ∪ Tℓ) = k + ℓ+ 1.
Note that if x is a leaf adja
ent to the degree i + 1 vertex r in some Ti,

then i verti
es are still needed to dominate Ti|N [x]. Then a strategy for

Staller so that the game does not �nish in less than k + ℓ + 1 moves is to

answer to any move from Dominator in the other tree by su
h a leaf (e.g. in

Figure 5.1, answer to Dominator's move in a with b). Then two moves are

played already and still k + ℓ − 1 verti
es at least are needed to dominate

the graph. The upper bound is already known. Similarly, if k > 2, for
any ℓ, γ′g(Tk ∪ Tℓ) = k + ℓ+ 2. Staller's strategy would be to start on a leaf

adja
ent to the root of Tk (e.g. b in Figure 5.1). Then whatever Dominator's

answer (optimally a), Staller 
an play a se
ond leaf adja
ent to a root (d).
Then either Dominator answers to the se
ond root (c) and at least k+ ℓ− 2
moves are required to dominate the other verti
es, or he tries to dominate a

leaf already (say e) and Staller 
an still play the root (c), leaving k + ℓ− 3
ne
essary moves after the �ve initial moves.

To prove that the lower bounds are tight, it is enough to 
onsider the

path on three verti
es P3 and the leg drawn in Figure 5.1, that is the tree


onsisting in a 
law whose degree three vertex is atta
hed to a P3. The path

P3 realizes (1, 2), the leg realizes (3, 4), 
he
king that the union is indeed a

(4, 5) is left to the reader. �

The next 
orollary dire
tly follows from the above theorems.

Corollary 5.13 No-minus graphs are 
losed under disjoint union.

Note that thanks to that 
orollary, we 
an extend the result of Theo-

rem 5.8 to all tri-split graphs.

Corollary 5.14 All tri-split graphs are no-minus graphs.

5.2.2 General 
ase

In this subse
tion, we 
onsider a union of any two graphs.
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Depending on the parity of the length of the game, we 
an re�ne Theo-

rem 5.10 as follows:

Theorem 5.15 Let G1|S1 and G2|S2 be partially dominated graphs.

• If γg(G1|S1) and γg(G2|S2) are both even, then

γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2) (5.5)

• If γg(G1|S1) is odd and γ′g(G2|S2) is even, then

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2) (5.6)

• If γ′g(G1|S1) and γ′g(G2|S2) are both even, then

γ′g(G1 ∪G2|S1 ∪ S2) ≤ γ′g(G1|S1) + γ′g(G2|S2) (5.7)

• If γ′g(G1|S1) is odd and γg(G2|S2) is even, then

γ′g(G1 ∪G2|S1 ∪ S2) ≥ γ′g(G1|S1) + γg(G2|S2) (5.8)

Proof. The proof is similar to the proof of Theorem 5.10. For inequal-

ity (5.5), let Staller use the strategy of following, assume without loss of

generality that G1 is dominated before G2. If Dominator played opti-

mally in G1, by parity Staller played the last move there and Dominator


ould not pass a move in G2, thus he 
ould not manage less moves in G2

than γg(G2|S2). Yet Dominator may have played so that one more move

was ne
essary in G1 in order to be able to pass in G2. Then the num-

ber of moves played in G2 may be only γg
dp(G2|S2), but this is no less

than γg(G2|S2) − 1 and overall, the number of moves is the same. Hen
e

we have γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2). The same argument

with Dominator using the strategy of following gives inequality (5.7).

Similarly, for inequality (5.6), Let Dominator start with playing an op-

timal move x in G1|S1 and then apply the strategy of following. Then

Staller plays in G1 ∪ G2|(S1 ∪ N [x]) ∪ S2, where γ′g(G1|S1 ∪ N [x]) =
γg(G1|S1)− 1 is even, as well as γ′g(G2|S2). Then by the previous argument,

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2). Inequality (5.8) is obtained

with a similar strategy for Staller. �

Using Theorem 5.10 and 5.15, we argue the 21 di�erent 
ases, a

ording

to the type and the parity of ea
h of the 
omponents of the union. To simplify

the 
omputation, we simply propose the following 
orollary of Theorem 5.10

Corollary 5.16 Let G1|S1 and G2|S2 be two partially dominated graphs.

We have

γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2)− 1 , (5.9)

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2) + 1 , (5.10)

γ′g(G1 ∪G2|S1 ∪ S2) ≤ γ′g(G1|S1) + γ′g(G2|S2) + 1 , (5.11)

γ′g(G1 ∪G2|S1 ∪ S2) ≥ γ′g(G1|S1) + γg(G2|S2)− 1 . (5.12)
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Proof. To prove these inequalities, with simply apply inequalities of The-

orem 5.10 in a general 
ase. We 
hoose for the vertex x an optimal move,

getting for example that γ′g(G1|S1 ∪ N [x]) = γg(G1|S1) − 1. We also use

Lemma 5.5 and get for example γg
dp(G2|S2) ≥ γg(G2|S2)− 1. �

We now present the general bounds in Table 5.2, whi
h should be read as

follows. The �rst two 
olumns give the types and parities of the 
omponents

of the union, where e, e1 and e2 denote even numbers and o, o1, and o2 denote
odd numbers. The next two 
olumns give the bounds on the domination

game numbers of the union. In the last two 
olumns, we give the inequalities

we use to get these bounds. We add a ∗ to the inequality number when the

inequality is used ex
hanging G1 and G2.

G1 G2 γg γ′g for γg for γ′g

(o1,−) (o2,+) γg = o1 + o2 − 1 γ′g = o1 + o2 (5.9),(5.6*) (5.12*),(5.7)

(e1,−) (e2,+) γg = e1 + e2 γ′g = e1 + e2 + 1 (5.5),(5.10*) (5.8*),(5.11)

(o1,−) (o2,−) γg = o1 + o2 − 1 γ′g = o1 + o2 − 2 (5.9),(5.6) (5.12),(5.7)

(e1,−) (e2,−) γg = e1 + e2 γ′g = e1 + e2 − 1 (5.5),(5.10) (5.8),(5.11)

(o1,=) (o2,−) γg = o1 + o2 − 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 (5.9),(5.6) (5.12*),(5.11)

(e1,=) (e2,−) γg = e1 + e2 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5.5),(5.10) (5.12),(5.11)

(e,=) (o,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o− 1 (5.9),(5.10) (5.12),(5.7)

(o,=) (e,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o (5.9),(5.10) (5.8),(5.11)

(e,=) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.6*) (5.12*),(5.11)

(o,−) (e,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.10*) (5.12*),(5.11)

(e,−) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.10*) (5.12*),(5.11)

(e,=) (o,=) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.6*) (5.8*),(5.11)

(o,−) (e,−) e+ o− 1 ≤ γg ≤ e+ o e+ o− 2 ≤ γ′g ≤ e+ o− 1 (5.9),(5.10) (5.12),(5.11)

(e1,=) (e2,=) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5.5),(5.10) (5.12),(5.7)

(e1,=) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 2 (5.5),(5.10*) (5.8*),(5.11)

(o,=) (e,+) e+ o− 1 ≤ γg ≤ e+ o+ 1 e+ o ≤ γ′g ≤ e+ o+ 2 (5.9),(5.10*) (5.8),(5.11)

(o1,+) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (5.9),(5.6) (5.12),(5.7)

(e1,+) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 2 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 3 (5.5),(5.10) (5.8),(5.11)

(o1,=) (o2,=) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 + 1 (5.9),(5.10) (5.12),(5.11)

(o1,=) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (5.9),(5.10*) (5.12*),(5.11)

(e,+) (o,+) e+ o− 1 ≤ γg ≤ e+ o+ 2 e+ o ≤ γ′g ≤ e+ o+ 3 (5.9),(5.10) (5.12),(5.11)

Table 5.2: Bounds for general graphs.

Using the inequalities of Theorems 5.10 and 5.15, we get the following

results.

Theorem 5.17 The bounds from Table 5.2 hold.

Note that only in the �rst four 
ases in Table 5.2 the exa
t game dom-

ination number as well as the Staller-start game domination number are

determined, while in the next four 
ases this is the 
ase for exa
tly one of

these two numbers. In all other 
ases, the di�eren
e between the lower and

upper bound is at least one and at most three.

We managed to tighten all these bounds but �ve, on in�nite families of

graphs.

Re
all that the Cartesian produ
t G�H of two graphs G and H is the
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G1 G2 lower on γg upper on γg lower on γ′g upper on γ′g

(o1,−) (o2,+) C6 ∪ P3 C6 ∪ P3 C6 ∪ P3 C6 ∪ P3

(e1,−) (e2,+) P2�P4 ∪ T2 P2�P4 ∪ T2 P2�P4 ∪ T2 P2�P4 ∪ T2

(o1,−) (o2,−) C6 ∪ C6 C6 ∪ C6 C6 ∪C6 C6 ∪ C6

(e1,−) (e2,−) P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4

(o1,=) (o2,−) K1 ∪ C6 K1 ∪ C6 ? K1 ∪ C6

(e1,=) (e2,−) P8 ∪ P2�P4 sp ∪ P2�P4 P8 ∪ P2�P4 sp ∪ P2�P4

(e,=) (o,−) NE ∪ C6 P8 ∪ C6 P8 ∪ C6 P8 ∪C6

(o,=) (e,−) P10 ∪ P2�P4 ? P10 ∪ P2�P4 P10 ∪ P2�P4

(e,=) (o,+) NE ∪W no-minus NE ∪W no-minus

(o,−) (e,+) C6 ∪BLPK C6 ∪ T4 C6 ∪BLPK C6 ∪ T4

(e,−) (o,+) P2�P4 ∪ P11 P2�P4 ∪ PCs P2�P4 ∪ P11 P2�P4 ∪ PCs

(e,=) (o,=) NE ∪ P6 sp ∪BLCK NE ∪ P6 sp ∪BLCK

(o,−) (e,−) C6 ∪ (3P2�P4) (3C6) ∪ P2�P4 C6 ∪ (3P2�P4) (3C6) ∪ P2�P4

(e1,=) (e2,=) NE ∪NE sp ∪ sp ? sp ∪ sp

(e1,=) (e2,+) no-minus sp ∪ T4 no-minus sp ∪ T4

(o,=) (e,+) CPP ∪BLPK K1 ∪BLP CPP ∪BLPK K1 ∪BLP

(o1,+) (o2,+) PC ∪ PC T5 ∪ T5 PC ∪ PC T5 ∪ T5

(e1,+) (e2,+) BLPK ∪BLPK BLP ∪BLP BLPK ∪BLPK BLP ∪BLP

(o1,=) (o2,=) CPP ∪ CPP ? ? NEsp ∪NEsp

(o1,=) (o2,+) BLCK ∪ PC BLCK ∪ PCs BLCK ∪ PC BLCK ∪ PCs

(e,+) (o,+) BLWK ∪ PC T4 ∪ (C6 ∪ P3) BLWK ∪ PC T4 ∪ (C6 ∪ P3)

Table 5.3: Examples of graphs that tighten bounds.

graph with vertex set V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)} and edge set

E(G�H) = {((u1, v1), (u2, v2))|(u1 = u2 and (v1, v2) ∈ E(H))
or (v1 = v2 and (u1, u2) ∈ E(G))}.

Table 5.3 gives examples of graphs that tighten all but �ve bounds. The

graphs that are not built from paths and 
y
les by disjoint unions and/or

Cartesian produ
ts are represented on Figure 5.4. Examples listed in this

table are small and 
an be veri�ed by hand or programming. To get bigger

examples, one 
an just add an even number of isolated verti
es to one or both

of the 
omponents. When the bound in general is the same as for no-minus

graphs, we just wrote `no-minus' as we know they yield examples rea
hing

the bound.

The following graphs with pairs they realise are used in Table 5.3 as

examples that make bounds in Table 5.2 tight.

• PC is (5,+)
• PCs is (3,+)
• sp is (4,=)
• NE is (6,=)
• NEsp is (5,=)
• CPP is (7,=)
• Tk is (k,+)
• BLP = P3 ∪ P2�P4 is (4,+)
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k − 1

Figure 5.4: From top to bottom, left to right: PC, PCs, sp, NE, NEsp, CPP ,
W , Tk

• BLC = P2�P4 ∪ C6 is (6,=)
• BLCK = P2�P4 ∪ C6 ∪K1 is (7,=)
• BLPK = P2�P4 ∪ P3 ∪K1 is (6,+)
• BLWK = P2�P4 ∪W ∪K1 is (8,+)

5.3 Perspe
tives

In this 
hapter, we looked at the domination game.

First, we took an interest in no-minus graphs, that are graphs in whi
h

no player ever gets any advantage passing, no matter whi
h set of verti
es is

dominated. We proved that both tri-split graphs and dually 
hordal graphs

are no-minus graphs. Chordal graphs are another generalisation of split

graphs, interval graphs and forests, so we pose the following 
onje
ture.

Conje
ture 5.18 Partially dominated 
hordal graphs are no-minus graphs.

The 
lasses of graphs that we proved to be no-minus are re
ognisable in

polynomial time. Hen
e the following question is natural.

Question 5.19 Can no-minus graphs be re
ognised in polynomial time?

Note that a naive algorithm that would 
onsist in 
he
king the values of

γg and γ′g would not work. First be
ause no polynomial algorithm is known
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to 
ompute γg or γ′g. And se
ond be
ause we would have to 
ompute these

values for all sets of initially-dominated verti
es of the graph, and there are

an exponential number of su
h sets.

Then we 
onsidered the game played on disjoint unions of graphs, where

we bounded the possible values of γg and γ′g. Noti
e that our results hold

even when the graphs are not 
onne
ted, so they 
an be applied re
ursively,

though then the di�eren
e between the lower bound and the upper bound

may in
rease. Note that the strategy we propose is not always optimal,

however we think it gives the optimal bound in general.

Conje
ture 5.20 All bounds from Table 5.2 are tight.
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Chapter 6

Con
lusion

This thesis has examined games under both normal and misère 
onven-

tion, and even a graph parameter seen as a game.

In Chapter 2, we studied two impartial games under normal 
onvention.

The �rst is a generalisation of Adja
ent Nim, 
lose to Vertex NimG, but

whi
h for
es the players to lower all the weights to 0. We found a polynomial-

time algorithm that gives the out
ome of a large 
lass of positions, and as

our 
lass is 
losed under followers, this lets us �nd a strategy for the winning

player. Nevertheless, we did not solve the problem entirely. It would be

interesting to �nd an e�
ient algorithm that would solve the general problem

on dire
ted graphs where the self-loops are optional. The problem on dire
ted

graphs with no self-loop is not 
losed under followers, so we do not think it

is the right problem to look at �rst.

The se
ond impartial game we studied 
an be seen as a generalisation

of Nim, as there is a bije
tion between Nim positions and orientations of

subdivided stars where all ar
s are dire
ted away from the 
enter, but was

a
tually derived from Toppling Dominoes, through a version where only

paths were 
onsidered. We found the out
ome of any position on a 
onne
ted

dire
ted graph, and the algorithm is a
tually able to keep tra
k of `equivalent'

ar
s throughout the redu
tion, so it is possible to ba
ktra
k any winning ar


from a minimal position to the original dire
ted graph. As the game does

not split in di�erent 
omponents, we 
ould be satis�ed with this result, but

it still feels like the game is not solved yet until one �nd a way to give the

Grundy-value of any position. We partially answered this question by giving

a 
ubi
-time algorithm that �nds the Grundy-value of any orientation of a

path. However, it would be interesting to have a more e�
ient algorithm

that gives su
h Grundy-values, even for orientations of paths only.

In Chapter 3, we studied three partizan games under normal 
onvention.

The �rst is a generalisation of Timber, that we studied in Chapter 2. We

gave polynomial-time algorithms to �nd the out
ome of any orientation of

paths with 
oloured ar
s, and of any 
onne
ted dire
ted graph with ar
s


oloured bla
k or white. Notwithstanding, the general problem is far from

solved. Even though the game does not split in di�erent 
omponents, we

do not know of an e�
ient algorithm that would give the out
ome of any


oloured 
onne
ted dire
ted graph. Finding the value of a position, even on

orientations of paths, seems like a hard problem, espe
ially sin
e there 
ould

be many di�erent values.
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The se
ond partizan game we studied is a 
oarsening of the �rst (though

it was de�ned earlier). The interest of our study was to 
hara
terise positions

having some values, or prove the existen
e of some values, on positions on a

single row. We 
ompletely 
hara
terised the positions on a single row having

value {a|b} with a > b, and provided examples of positions on a single row

having value {a|{b|c}} for a > b > c or {{a|b}|{c|d}} for a > b > c > d. It
would be interesting to 
omplete the 
hara
terisation of these last two sets

of positions. Other interesting 
onje
tures on the game 
an be found in [17℄.

The last partizan game we looked at is a 
olouring game. Though any

position on a grey graph has value 0 or ∗, and the value of other positions is

restri
ted to numbers and sums of numbers and ∗, �nding the out
ome of a

position is quite 
omplex. We gave the out
omes of grey positions belonging

to some sub
lasses of trees, and the out
omes of grey 
ographs. It would be

interesting to �nd an algorithm that would give the out
ome of any grey tree,

and maybe put it together with the algorithm we propose for grey 
ographs

to �nd the out
ome of any distan
e-hereditary graph.

In Chapter 4, we swit
hed to the misère 
onvention. First, we des
ribed

the misère version of the games we studied earlier. We provided results on

a 
omplexity level as well as on �nding algorithms that give the out
ome of

position, and results on redu
ing the problem to positions that seem simpler.

There are games on whi
h we did not say mu
h, but the misère version of

a game is in general harder to solve than its normal version, as highlighted

with Vertex Geography, where one 
an �nd the normal out
ome of any

position on an undire
ted graph G in time O(|E(G)|
√

|V (G)|) whereas �nd-
ing the misère out
ome of a position, even on planar undire
ted graphs of

maximum degree 5, is pspa
e-
omplete. In 
ontrast, we gave a solution

to �nd the misère out
ome of any LR-Toppling Dominoes position in a

linear time. However, there is still a lot to sear
h on the general version of

Toppling Dominoes under misère 
onvention, where we allow grey domi-

noes. The other games we studied are not 
ompletely solved either, and


ould be subje
t to future resear
h.

Then we looked at misère universes. The �rst we 
onsider is a well-

known set of games. Under the normal 
onvention, these games are 
alled

all-small be
ause they all are in�nitesimal, that is they are smaller than any

positive number and greater than any negative number. Under the misère


onvention, we gave them a 
anoni
al form. However, there is no e�
ient

way to 
ompute this 
anoni
al form as it requires to dete
t dominated and

reversible options, and we do not know of an e�
ient way of 
omparing any

two games. In pra
ti
e, though, there are situations where it is possible to


ompare games, and we hope our analysis of games born by day 3 
an help

in the endgames of di
ot positions.

Next, we looked at a se
ond universe in misère play. Though this universe

is somehow new, it 
ontains many games that have been studied before. In
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parti
ular, it 
ontains the universe of di
ot games, studied in the previous

se
tion. We analysed ends and numbers. Ends might appear quite often in

games, but numbers in normal 
anoni
al form are less frequent. Nonetheless,

it is still interesting to know there are quite many games admitting an inverse

modulo the dead-ending universe, and that even some games not being of

this kind of sum are equivalent to 0 in this universe.

In Chapter 5, we left 
ombinatorial games to study the domination game.

We found some 
lasses of graphs where the analysis should be easier, and

looked at what value the parameter of the disjoint union of two graphs may

have 
onsidering the values of the parameter of these two graphs and the

pro
ess 
an be repeated on more than two 
omponents. It is interesting

to see how this vision from 
ombinatorial games, seeing the game as a dis-

jun
tive sum, helps highlighting how interesting no-minus graphs are for the

domination game. We also used the imagination strategy whi
h, without

being de�ned as a 
ombinatorial games tool, may remind us of the stealing

strategy argument used to �nd the winning player in some 
ombinatorial

games. No-minus graphs are interesting be
ause they are somewhat more

predi
table, so it would be ni
e to be able to 
hara
terise them, or �nd other


lasses of graphs having this property.
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Appendix A

Appendix: Rule sets

• Clobber is a partizan game played on an undire
ted graph with

verti
es 
oloured bla
k or white. At her turn, Left 
hooses a white

vertex she 
olours bla
k and a bla
k vertex she removes from the game

provided the two verti
es were adja
ent. At his turn, Right 
hooses a

bla
k vertex he 
olours white and a white vertex he removes from the

game provided the two verti
es were adja
ent.

• Col is a partizan game played on an undire
ted graph with verti
es

either un
oloured or 
oloured bla
k or white. A move of Left 
onsists

in 
hoosing an un
oloured vertex and 
olouring it bla
k, while a move

of Right would be to do the same with the 
olour white. An extra


ondition is that the partial 
olouring has to stay proper, that is no

two adja
ent verti
es should have the same 
olour. Another way of

seeing the game is to play it on the graph of available moves: a position

is an undire
ted graph with all verti
es 
oloured bla
k, white or grey;

a move of Left is to 
hoose a bla
k or grey vertex, remove it from the

game with all its bla
k 
oloured neighbours, and 
hange the 
olour of

its other neighbours to white; a move of Right is to 
hoose a white

or grey vertex, remove it from the game with all its white 
oloured

neighbours, and 
hange the 
olour of its other neighbours to bla
k.

• Domineering is a partizan game played on a square grid, where

some verti
es might be missing. A move of Left 
onsists in 
hoosing

two verti
ally adja
ent verti
es and remove them from the game, while

a Right move is to 
hoose two horizontally adja
ent verti
es and remove

them from the game. The game is usually represented with a grid of

squares where players put dominoes without superimposing them.

• Flip the 
oin is a partizan game played on one or several rows of


oins, ea
h 
oin fa
ing either heads or tails. At her turn, Left 
hooses

a 
oin fa
ing heads and removes it from the game, �ipping the 
oins

adja
ent to it. At his turn, Right does the same with a 
oin fa
ing tail.

There exists a variant where the two neighbours of the 
oin removed

be
ome adja
ent.

• Geography is an impartial game played on a dire
ted graph with a

token on a vertex. There exist two variants of the game: Vertex Ge-

ography and Edge Geography. A move in Vertex Geography

is to slide the token through an ar
 and delete the vertex on whi
h

the token was. A move in Edge Geography is to slide the token
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through an ar
 and delete the edge on whi
h the token just slid. In

both variants, the game ends when the token is on an isolated vertex.

Geography 
an also be played on an undire
ted graph G by seeing it

as a symmetri
 dire
ted graph where the vertex set remains the same

and the ar
 set is {(u, v), (v, u)|(u, v) ∈ E(G)}, ex
ept that in the 
ase

of Edge Geography, going through an edge (u, v) would remove

both the ar
 (u, v) and the ar
 (v, u) of the dire
ted version.

• Ha
kenbush is a partizan game played on a graph with ar
s


oloured bla
k, white, or grey, and a spe
ial vertex 
alled the ground.

At her turn, Left removes a grey or bla
k edge from the game, and

everything that is no longer 
onne
ted to the ground falls down (is

removed from the game). At his turn, Right does the same with a

grey or white edge.

• Hex is a partizan game played on an hexagonal grid. At her turn,

Left pla
es a bla
k pie
e on an empty vertex, and Right does the same

at his turn with a white pie
e. The game ends when there is a path

of bla
k stones 
onne
ting the upper-left side to the lower-right side

of the board, or a path of white stone 
onne
ting the upper-right side

to the lower-left side of the board.

• Nim is an impartial game played on one or several heaps of tokens.

At their turn, a player removes any positive number of tokens from

one single heap they 
hoose.

• O
tal games are impartial games played on one or several heaps of

tokens. The possible moves of an o
tal game are given by its o
tal


ode d0.d1d2 . . ., where di range between 0 and 7. At their move, a

player may remove i tokens from a heap if either the heap is of size i
and di is odd, or if the heap is of size greater than i and di is 
ongruent
to 2 or 3 modulo 4. They might even split a heap into two non-empty

heap, removing i tokens if di is at least 4. Note that d0 may only have

value 0 or 4.
• Peg Duotaire is an impartial game played on a grid, with pegs

on some verti
es. On a move, a player hops a peg over another one,

provided they are adja
ent, and landing right on the other side of it,

and removes the se
ond peg from the game.

• Partizan Peg Duotaire is an impartial game played on a square

grid, with pegs on some verti
es. On her move, Left hops a peg over

another one, provided they are verti
ally adja
ent, and landing right

on the other side of it, and removes the se
ond peg from the game.

On his move, Right hops a peg over another one, provided they are

horizontally adja
ent, and landing right on the other side of it, and

removes the se
ond peg from the game.

• She loves move, she loves me not is the name of the o
tal

game 0.3, whi
h is equivalent to the o
tal game 0.7.
• Snort is a partizan game played on an undire
ted graph with verti
es
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either un
oloured or 
oloured bla
k or white. A move of Left 
onsists

in 
hoosing an un
oloured vertex and 
olouring it bla
k, while a move

of Right would be to do the same with the 
olour white. An extra


ondition is that no two adja
ent verti
es should have di�erent 
olours.

Another way of seeing the game is to play it on the graph of available

moves: a position is an undire
ted graph with all verti
es 
oloured

bla
k, white or grey; a move of Left is to 
hoose a bla
k or grey vertex,

remove it from the game with all its white 
oloured neighbours, and


hange the 
olour of its other neighbours to bla
k; a move of Right

is to 
hoose a white or grey vertex, remove it from the game with

all its bla
k 
oloured neighbours, and 
hange the 
olour of its other

neighbours to white.

• Timber is an impartial game played on a dire
ted graph. On a move,

a player 
hooses an ar
 (x, y) of the graph and removes it along with all

that is still 
onne
ted to the endpoint y in the underlying undire
ted

graph where the ar
 (x, y) has already been removed. Another way of

seeing it is to put a verti
al domino on every ar
 of the dire
ted graph,

and 
onsider that if one domino is toppled, it topples the dominoes in

the dire
tion it was toppled and 
reates a 
hain rea
tion. The dire
tion

of the ar
 indi
ates the dire
tion in whi
h the domino 
an be initially

toppled, but has no in
iden
e on the dire
tion it is toppled, or on the

fa
t that it is toppled, if a player has 
hosen to topple a domino whi
h

will eventually topple it.

• Timbush is the natural partizan extension of Timber, played on a

dire
ted graph with ar
s 
oloured bla
k, white, or grey. On her move,

Left 
hooses a bla
k or grey ar
 (x, y) of the graph and removes it along

with all that is still 
onne
ted to the endpoint y in the underlying

undire
ted graph. On his move, Right does the same with a white or

grey ar
.

• Toppling Dominoes is a partizan game played on one or several

rows of dominoes 
oloured bla
k, white, or grey. On her move, Left


hooses a bla
k or grey domino and topples it with all dominoes (of

the same row) at its left, or with all dominoes (of the same row) at its

right. On his turn, Right does the same with a white or grey domino.

• VertexNim is an impartial game played on a weighted strongly-


onne
ted dire
ted graph with a token on a vertex. On a move, a

player de
reases the weight of the vertex where the token is and slides

the token along a dire
ted edge. When the weight of a vertex v is set

to 0, v is removed from the graph and all the pairs of ar
s (p, v) and
(v, s) (with p and s not ne
essarily distin
t) are repla
ed by an ar


(p, s).
VertexNim 
an also be played on a 
onne
ted undire
ted graph G by

seeing it as a symmetri
 dire
ted graph where the vertex set remains

the same and the ar
 set is {(u, v), (v, u)|(u, v) ∈ E(G)}.
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• Vertex NimG is an impartial game played on a weighted dire
ted

graph with a token on a vertex. There exist two variants of the game,

the Move then Remove version and the Remove then Move version. In

the Move then Remove version, a player's move is to slide the token

through an ar
 and then de
rease the weight of the vertex on whi
h

they moved the token to. In the Remove then Move version, a player's

move is to de
rease the weight of the vertex where the token is and

then slide the token through an ar
. When the weight of a vertex is set

to 0, the vertex is removed from the game. In the Remove then Move

version, there is a variant where it is still possible to move to verti
es

of weight 0, ending the game as no move is possible from there.
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Appendix B

Appendix: Omitted proofs

B.1 Proof of Theorem 3.30

Theorem 3.30 If a > b > c are numbers, then aLRcRLb has value{
a
∣∣{b|c}

}
. Moreover, if a > b, then aEcRLb also has value

{
a
∣∣{b|c}

}
.

We 
ut the proof into two 
laims, one proving aLRcRLb has value{
a
∣∣{b|c}

}
, the other proving aEcRLb has value

{
a
∣∣{b|c}

}
.

We start by proving aLRcRLb has value

{
a|{b

∣∣c}
}
. We �rst prove some

preliminary lemmas on options of aLRcRLb.

Lemma B.1 Let a, b be numbers su
h that a > b. For any Right option bR

obtained from b toppling rightward and any Right option aR obtained from

a toppling leftward, we have aRLRbR > b.

Proof. We prove that Left has a winning strategy in aRLRbR − b whoever
plays �rst. When Left starts, she 
an move to aR−b, whi
h is positive. Now


onsider the 
ase when Right starts, and his possible moves from aRLRbR−b.
If Right plays in −b, we get

• aRLRbR + (−b)R. Re
all that sin
e b is taken in its 
anoni
al form,

there is only one Right option to −b, namely (−b)R0
. Here Left 
an

answer to aR + (−b)R0
, whi
h is positive.

Consider now Right's possible moves in aRLRbR
. Toppling rightward, Right


an move to:

• (aR)R − b, positive.
• aRL− b, positive as aRL > aR > a.
• aRLR(bR)R − b. Then Left 
an answer to aR − b, whi
h is positive.

Toppling leftward, Right 
an move to:

• (aR)RLRbR− b. Then Left 
an answer to (aR)R− b, whi
h is positive.

• bR − b, positive.
• (bR)R − b, positive.

�

Lemma B.2 Let a, b, c be numbers su
h that a > b > c. For any Right

option bR
obtained from b toppling rightward, we have aLRcRLbR > {b|c}.

Proof. We prove that Left has a winning strategy in aLRcRLbR − {b|c}
whoever plays �rst. When Left starts, she 
an move to a − {b|c}, whi
h is
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positive. Now 
onsider the 
ase when Right starts, and his possible moves

from aLRcRLbR − {b|c}. If Right plays in −{b|c}, we get

• aLRcRLbR − b. Then Left 
an answer to a− b, whi
h is positive.

Consider now Right's possible moves in aLRcRLbR
. Toppling rightward,

Right 
an move to:

• aR − {b|c}, positive.
• aL− {b|c}, positive.
• aLRcR − {b|c}, positive as aLRcR > {a|c} > {b|c}.
• aLRc− {b|c}, positive.
• aLRcRL(bR)R−{b|c}. Then Left 
an answer to (bR)R−{b|c}, whi
h

is positive by Corollary 3.34

Toppling leftward, Right 
an move to:

• aRLRcRLbR − {b|c}. Then Left 
an answer to aR − {b|c}, whi
h is

positive.

• cRLbR − {b|c}, positive by Lemma 3.39

• cRRLbR − {b|c}. Then Left 
an answer to cRRLbR − c, whi
h is

positive by Lemma B.1

• LbR − {b|c}, positive by Corollary 3.34

• (bR)R − {b|c}, positive by Corollary 3.34

�

Lemma B.3 Let a, b, c be numbers su
h that a > b > c. For any Left option
aL obtained from a toppling leftward, we have aLLRcRLb < a.

Proof. We prove that Right has a winning strategy in aLLRcRLb − a
whoever plays �rst. When Right starts, he 
an move to cRLb− a, whi
h is

negative. Now 
onsider the 
ase when Left starts, and her possible moves

from aLLRcRLb− a. If Left plays in −a, we get

• aLLRcRLb+(−a)L0
. Then Right 
an answer to cRLb+(−a)L0

, whi
h

is negative.

Consider now Left's possible move in cRLb. Toppling rightward, Left 
an

move to:

• (aL)L − a, negative.
• aL − a, negative.
• aLLRcL − a. Then Right 
an answer to cL − a, whi
h is negative.

• aLLRcR− a. Then Right 
an answer to cR− a, whi
h is negative.

• aLLRcRLbL − a. Then Right 
an answer to aLLRc − a, whi
h is

negative by Lemma 3.35.

Toppling leftward, Left 
an move to:

• (aL)LLRcRLb − a. Then Right 
an answer to cRLb − a, whi
h is

negative.

• RcRLb− a, negative.
• cLRLb− a. Then Right 
an answer to cL − a, whi
h is negative.
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• b− a, negative.
• bL − a, negative.

�

Lemma B.4 Let a, b, c be numbers su
h that a > b > c. For any Left option
bL

obtained from b toppling rightward, we have cRLbL <
{
a|{b

∣∣c}
}
.

Proof. We prove that Right has a winning strategy in cRLbL −
{
a|{b

∣∣c}
}

whoever plays �rst. When Right starts, he 
an move to c−
{
a|{b

∣∣c}
}
, whi
h

is negative. Now 
onsider the 
ase when Left starts, and her possible moves

from cRLbL −
{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get

• cRLbL − {b|c}, negative by Lemma 3.40.

Consider now Right's possible moves in cRLbL
. Toppling rightward, Left


an move to:

• cL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to cL − a, whi
h is negative.

• cR−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cR− a, whi
h is negative.

• cRL(bL)L−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cRL(bL)L−a, whi
h

is negative by Lemma 3.35.

Toppling leftward, Left 
an move to:

• cLRLbL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to cLRLbL − a, whi
h

is negative by Lemma B.1.

• bL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to bL − a, whi
h is negative.

• (bL)L −
{
a|{b

∣∣c}
}
. Then Right 
an answer to (bL)L − a, whi
h is

negative.

�

We 
an now prove the following 
laim.

Claim B.5 Let a, b, c be numbers su
h that a > b > c. We have

aLRcRLb =
{
a|{b

∣∣c}
}
.

Proof. We prove that the se
ond player has a winning strategy in

aLRcRLb−
{
a|{b

∣∣c}
}
. Consider �rst the 
ase where Right starts and his

possible moves from aLRcRLb −
{
a|{b

∣∣c}
}
. If Right plays in −

{
a|{b

∣∣c}
}
,

we get

• aLRcRLb− a. Then Left 
an answer to a− a whi
h has value 0.

Consider now Right's possible moves in aLRcRLb. Toppling leftward, Right

an move to:

• aRLRcRLb −
{
a|{b

∣∣c}
}
. Then Left 
an answer to aR −

{
a|{b

∣∣c}
}
,

whi
h is positive.

• cRLb−
{
a|{b

∣∣c}
}
. Then Left 
an answer to cRLb− {b|c} whi
h has

value 0.
• cRRLb−

{
a|{b

∣∣c}
}
. Then Left 
an answer to cRRLb− {b|c}, whi
h

is positive by Lemma 3.40.
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• Lb−
{
a|{b

∣∣c}
}
. Then Left 
an answer to Lb−{b|c}, whi
h is positive

by Corollary 3.34.

• bR−
{
a|{b

∣∣c}
}
. Then Left 
an answer to bR−{b|c}, whi
h is positive

by Corollary 3.34.

Toppling rightward, Right 
an move to:

• aR −
{
a|{b

∣∣c}
}
, positive.

• aL−
{
a|{b

∣∣c}
}
, positive.

• aLRcR −
{
a|{b

∣∣c}
}
. Then Left 
an answer to aLRcR − {b|c}, whi
h

is positive by Lemma 3.40.

• aLRc −
{
a|{b

∣∣c}
}
. Then Left 
an answer to aLRc − {b|c}, whi
h is

positive if a > b, and has value 0 if a = b.
• aLRcRLbR−

{
a|{b

∣∣c}
}
. Then Left 
an answer to aLRcRLbR−{b|c},

whi
h is positive when a > b by Lemma B.2, or to bR −
{
a|{b

∣∣c}
}
,

whi
h is positive when a = b.

Now 
onsider the 
ase where Left starts and her possible moves from

aLRcRLb−
{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get

• aLRcRLb−{b|c}. Then Right 
an answer to cRLb−{b|c} whi
h has

value 0.

Consider now Left's possible move in aLRcRLb. Toppling rightward, Left


an move to:

• aLRcRLbL−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cRLbL−

{
a|{b

∣∣c}
}
,

whi
h is negative by Lemma B.4.

• aLRcR−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cR−

{
a|{b

∣∣c}
}
, whi
h

is negative.

• aLRcL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to cL −

{
a|{b

∣∣c}
}
, whi
h

is negative.

• a−
{
a|{b

∣∣c}
}
. Then Right 
an answer to a− a whi
h has value 0.

• aL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to aL − a, whi
h is negative.

Toppling leftward, Left 
an move to:

• bL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to bL − a, whi
h is negative.

• b−
{
a|{b

∣∣c}
}
. Then Right 
an answer to b− a, whi
h is negative.

• cLRLb−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cL −

{
a|{b

∣∣c}
}
, whi
h

is negative.

• RcRLb−
{
a|{b

∣∣c}
}
. Then Right 
an answer to Rc−

{
a|{b

∣∣c}
}
, whi
h

is negative.

• aLLRcRLb −
{
a|{b

∣∣c}
}
. Then Right 
an answer to aLLRcRLb − a,

whi
h is negative by Lemma B.3 when a > b, or to aLLRc−
{
a|{b

∣∣c}
}
,

whi
h is negative by Lemma B.4 when a = b.

�

As an example, here is a representation of

{
− 1|{−7

4 | − 2}
}
:
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We now prove that aEcRLb has value

{
a|{b

∣∣c}
}
. Again, we �rst prove

some preliminary lemmas on options of aEcRLb.

Lemma B.6 Let a, b, c be numbers su
h that a > b > c. For any Right

option bR
obtained from b toppling rightward, we have aEcRLbR > {b|c}.

Proof. We prove that Left has a winning strategy in aEcRLbR − {b|c}
whoever plays �rst. When Left starts, she 
an move to bR − {b|c}, whi
h
is positive by Corollary 3.34. Now 
onsider the 
ase when Right starts, and

his possible moves from aEcRLbR − {b|c}. If Right plays in −{b|c}, we get

• aEcRLbR − b. Then Left 
an answer to a− b, whi
h is positive.

Consider now Right's possible moves in aEcRLbR
. Toppling rightward,

Right 
an move to:

• aR − {b|c}, positive.
• a− {b|c}, positive.
• aEcR − {b|c}. Then Left 
an answer to a− {b|c}, whi
h is positive.

• aEc− {b|c}, positive.
• aEcRL(bR)R − {b|c}. Then Left 
an answer to (bR)R − {b|c}, whi
h

is positive by Corollary 3.34.

Toppling leftward, Right 
an move to:

• aREcRLbR − {b|c}. Then Left 
an answer to aR − {b|c}, whi
h is

positive.

• cRLbR −{b|c}. Then Left 
an answer to bR −{b|c}, whi
h is positive

by Corollary 3.34.

• cRRLbR−{b|c}. Then Left 
an answer to bR−{b|c}, whi
h is positive

by Corollary 3.34.

• LbR − {b|c}, positive by Corollary 3.34.

• (bR)R − {b|c}, positive by Corollary 3.34.

�

Lemma B.7 Let a, b, c be numbers su
h that a > b > c. For any Left option
aL obtained from a toppling leftward, we have aLEcRLb < a.

Proof. We prove that Right has a winning strategy in aLEcRLb−a whoever
plays �rst. When Right starts, he 
an move to aL−a, whi
h is negative. Now

onsider the 
ase when Left starts, and her possible moves from aLEcRLb−a.
If Left plays in −a, we get

• aLEcRLb+ (−a)L. Then Right 
an answer to cRLb+ (−a)L, whi
h
is negative.

Consider now Left's possible moves in aLEcRLb. Toppling rightward, Left


an move to:

• (aL)L − a, negative.
• aL − a, negative.
• aLEcL − a. Then Right 
an answer to cL − a, whi
h is negative.
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• aLEcR− a. Then Right 
an answer to cR− a, whi
h is negative.

• aLEcRLbL − a. Then Right 
an answer to aL − a, whi
h is negative.

Toppling leftward, Left 
an move to:

• (aL)LEcRLb − a. Then Right 
an answer to cRLb − a, whi
h is

negative.

• cRLb− a, negative.
• cLRLb− a. Then Right 
an answer to cL − a, whi
h is negative.

• b− a, negative.
• bL − a, negative.

�

We 
an now prove the following 
laim.

Claim B.8 Let a, b be numbers su
h that a > b > c. We have

aEcRLb =
{
a|{b

∣∣c}
}
.

Proof. We prove that the se
ond player has a wining strategy in

aEcRLb−
{
a|{b

∣∣c}
}
. Consider �rst the 
ase where Right starts and his

possible moves from aEcRLb−
{
a|{b

∣∣c}
}
. If Right plays in −

{
a|{b

∣∣c}
}
, we

get

• aLRcRLb− a. Then Left 
an answer to a− a whi
h has value 0.

Consider now Right's possible moves in aEcRLb. Toppling leftward, Right


an move to:

• aREcRLb−
{
a|{b

∣∣c}
}
. Then Left 
an answer to aR−

{
a|{b

∣∣c}
}
, whi
h

is positive.

• cRLb−
{
a|{b

∣∣c}
}
. Then Left 
an answer to cRLb− {b|c} whi
h has

value 0.
• cRRLb−

{
a|{b

∣∣c}
}
. Then Left 
an answer to cRRLb−{b|c} whi
h is

positive by Lemma 3.40.

• Lb−
{
a|{b

∣∣c}
}
. Then Left 
an answer to Lb−{b|c}, whi
h is positive

by Corollary 3.34.

• bR−
{
a|{b

∣∣c}
}
. Then Left 
an answer to bR−{b|c}, whi
h is positive

by Corollary 3.34.

Toppling rightward, Right 
an move to:

• aR −
{
a|{b

∣∣c}
}
, positive.

• a−
{
a|{b

∣∣c}
}
, positive.

• aEcR −
{
a|{b

∣∣c}
}
. Then Left 
an answer to aEcR − {b|c}, whi
h is

positive by Lemma 3.42.

• aEc −
{
a|{b

∣∣c}
}
. Then Left 
an answer to aEc − {b|c}, whi
h is

positive.

• aEcRLbR −
{
a|{b

∣∣c}
}
. Then Left 
an answer to aEcRLbR − {b|c},

whi
h is positive by Lemma B.6.

Now 
onsider the 
ase where Left starts and her possible moves from

aEcRLb−
{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get
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• aEcRLb − {b|c}. Then Right 
an answer to cRLb − {b|c} whi
h has

value 0.

Consider now Left's possible move in aEcRLb. Toppling rightward, Left 
an
move to:

• aEcRLbL−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cRLbL−

{
a|{b

∣∣c}
}
,

whi
h is negative by Lemma B.4.

• aEcR −
{
a|{b

∣∣c}
}
. Then Right 
an answer to cR −

{
a|{b

∣∣c}
}
, whi
h

is negative.

• aEcL−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cL−

{
a|{b

∣∣c}
}
, whi
h is

negative.

• a−
{
a|{b

∣∣c}
}
. Then Right 
an answer to a− a whi
h has value 0.

• aL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to aL − a, whi
h is negative.

Toppling leftward, Left 
an move to:

• bL −
{
a|{b

∣∣c}
}
. Then Right 
an answer to bL − a, whi
h is negative.

• b−
{
a|{b

∣∣c}
}
. Then Right 
an answer to b− a, whi
h is negative.

• cLRLb−
{
a|{b

∣∣c}
}
. Then Right 
an answer to cL −

{
a|{b

∣∣c}
}
, whi
h

is negative.

• cRLb−
{
a|{b

∣∣c}
}
. Then Right 
an answer to c−

{
a|{b

∣∣c}
}
, whi
h is

negative.

• aLEcRLb−
{
a|{b

∣∣c}
}
. Then Right 
an answer to aLEcRLb−a, whi
h

is negative by Lemma B.7.

�

As an example, here is a representation of

{
3|{1| − 3

2}
}
:

B.2 Proof of Theorem 3.31

Theorem 3.31 If a > b > c > d are numbers, then both bRLaLRdRLc
and bRLaEdRLc have value

{
{a|b}

∣∣{c|d}
}
.

We 
ut the proof into two 
laims, one proving bRLaLRdRLc has value{
{a|b}

∣∣{c|d}
}
, the other proving bRLaEdRLc has value

{
{a|b}

∣∣{c|d}
}
.

We start by proving bRLaLRdRLc has value

{
{a|b}

∣∣{c|d}
}
. We �rst

prove some preliminary lemmas on options of bRLaLRdRLc.

Lemma B.9 Let a, b, c, d be numbers su
h that a > b > c > d.
For any Right option bR

obtained from b toppling leftward, we have

bRRLa >
{
{a|b}

∣∣{c|d}
}
.

Proof. We prove Left has a winning strategy in bRRLa −
{
{a|b}

∣∣{c|d}
}

whoever plays �rst. When Left starts, she 
an move to bRRLa − {c|d},
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whi
h is positive by Lemma 3.40. Now 
onsider the 
ase when Right starts,

and his possible moves from bRRLa −
{
{a|b}

∣∣{c|d}
}
. If Right plays in

−
{
{a|b}

∣∣{c|d}
}
, we get

• bRRLa− {a|b}, positive by Lemma 3.40.

Consider now Right's possible moves in bRRLa. Toppling rightward, Right


an move to:

• (bR)R−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to (bR)R−{c|d}, whi
h

is positive.

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to bR − {c|d}, whi
h is

positive.

• bRRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to aR−

{
{a|b}

∣∣{c|d}
}
,

whi
h is positive.

Toppling leftward, Right 
an move to:

• (bR)RRLa−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to a−

{
{a|b}

∣∣{c|d}
}
,

whi
h is positive.

• La−
{
{a|b}

∣∣{c|d}
}
, positive.

• aR −
{
{a|b}

∣∣{c|d}
}
, positive.

�

Lemma B.10 Let a, b, c, d be numbers su
h that a > b > c > d.
For any Right option dR

obtained from d toppling rightward, we have

bRLaLRdR > {c|d}.

Proof. We prove that Left has a winning strategy in bRLaLRdR − {c|d}
whoever plays �rst. When Left starts, she 
an move to bRLa−{c|d}, whi
h
is positive. Now 
onsider the 
ase when Right starts, and his possible moves

from bRLaLRdR − {c|d}. If Right plays in −{c|d}, we get

• bRLaLRdR− c. Then Left 
an answer to bRLa− c, whi
h is positive.

Consider now Right's possible moves in bRLaLRdR
. Toppling rightward,

Right 
an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR−{c|d}. Then Left 
an answer to aR−{c|d}, whi
h is positive.

• bRLaL−{c|d}. Then Left 
an answer to aL−{c|d}, whi
h is positive.

• bRLaLR(dR)R−{c|d}. Then Left 
an answer to bRLa−{c|d}, whi
h
is positive.

Toppling leftward, Right 
an move to:

• bRRLaLRdR−{c|d}. Then Left 
an answer to bRRLa−{c|d}, whi
h
is positive.

• LaLRdR−{c|d}. Then Left 
an answer to La−{c|d}, whi
h is positive.
• aRLRdR−{c|d}. Then Left 
an answer to aR−{c|d}, whi
h is positive.
• dR − {c|d}. Then Left 
an answer to dR − d, whi
h is positive.

• (dR)R − {c|d}. Then Left 
an answer to (dR)R − d, whi
h is positive.
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�

Lemma B.11 Let a, b, c, d be numbers su
h that a > b > c > d.
For any Right option cR obtained from c toppling rightward, we have

bRLaLRdRLcR > {c|d}.

Proof. We prove that Left has a winning strategy in bRLaLRdRLcR−{c|d}
whoever plays �rst. When Left starts, she 
an move to bRLa−{c|d}, whi
h
is positive. Now 
onsider the 
ase when Right starts, and his possible moves

from bRLaLRdRLcR − {c|d}. If Right plays in −{c|d}, we get

• bRLaLRdRLcR − c. Then Left 
an answer to bRLa − c, whi
h is

positive.

Consider now Right's possible moves in bRLaLRdRLcR. Toppling right-

ward, Right 
an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive.
• bRLaL− {c|d}, positive.
• bRLaLRdR −{c|d}. Then Left 
an answer to bRLa−{c|d}, whi
h is

positive.

• bRLaLRd− {c|d}, positive.
• bRLaLRdRL(cR)R − {c|d}. Then Left 
an answer to bRLa− {c|d},

whi
h is positive.

Toppling leftward, Right 
an move to:

• bRRLaLRdRLcR − {c|d}. Then Left 
an answer to bRRLa − {c|d},
whi
h is positive as bRRLa > {a|b}.

• LaLRdRLcR − {c|d}. Then Left 
an answer to La − {c|d}, whi
h is

positive.

• aRLRdRLcR − {c|d}. Then Left 
an answer to aR − {c|d}, whi
h is

positive.

• dRLcR − {c|d}, positive by Lemma 3.39.

• dRRLcR−{c|d}. Then Left 
an answer to cR−{c|d}, whi
h is positive

by Corollary 3.34.

• LcR − {c|d}, positive by Corollary 3.34.

• (cR)R − {c|d}, positive by Corollary 3.34.

�

We 
an now prove the following 
laim.

Claim B.12 Let a, b, c, d be numbers su
h that a > b > c > d. We have

bRLaLRdRLc =
{
{a|b}

∣∣{c|d}
}
.

Proof. To prove that bRLaLRdRLc =
{
{a|b}

∣∣{c|d}
}
, we prove that the

se
ond player has a winning strategy in bRLaLRdRLc −
{
{a|b}

∣∣{c|d}
}
.
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Without loss of generality, we may assume Right starts the game, and 
on-

sider his possible moves from bRLaLRdRLc−
{
{a|b}

∣∣{c|d}
}
. If Right plays

in −
{
{a|b}

∣∣{c|d}
}
, we get

• bRLaLRdRLc− {a|b}. Then Left 
an answer to bRLa− {a|b} = 0.

Consider now Right's possible moves in bRLaLRdRLc. Toppling rightward,
Right 
an move to:

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to bR − {c|d}, whi
h is

positive.

• b−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to b−{c|d}, whi
h is positive.

• bRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to aR−

{
{a|b}

∣∣{c|d}
}
,

whi
h is positive.

• bRLaL−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to aL−

{
{a|b}

∣∣{c|d}
}
,

whi
h is positive.

• bRLaLRdR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

bRLaLRdR − {c|d}, whi
h is positive by Lemma B.10.

• bRLaLRd −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

bRLaLRd− {c|d}, whi
h is positive.

• bRLaLRdRLcR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

bRLaLRdRLcR − {c|d}, whi
h is positive by Lemma B.11.

Toppling leftward, Right 
an move to:

• bRRLaLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

bRRLa−
{
{a|b}

∣∣{c|d}
}
, whi
h is positive by Lemma B.9.

• LaLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

La−
{
{a|b}

∣∣{c|d}
}
, whi
h is positive.

• aRLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

aR −
{
{a|b}

∣∣{c|d}
}
, whi
h is positive.

• dRLc−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to dRLc− {c|d} whi
h

has value 0.
• dRRLc −

{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to dRRLc − {c|d},

whi
h is positive by Lemma 3.40.

• Lc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to Lc − {c|d}, whi
h is

positive by Corollary 3.34.

• cR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to cR − {c|d}, whi
h is

positive by Corollary 3.34.

�

As an example, here is a representation of

{
{1|1}

∣∣{1
2 |0}

}
:

We now prove bRLaEdRLc has value

{
{a|b}

∣∣{c|d}
}
. Again, we �rst

prove some preliminary lemmas on options of bRLaEdRLc.
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Lemma B.13 Let a, b, c, d be numbers su
h that a > b > c > d.
For any Right option dR

obtained from d toppling rightward, we have

bRLaEdR > {c|d}.

Proof. We prove Left has a winning strategy in bRLaEdR −{c|d} whoever

plays �rst. When Left starts, she 
an move to bRLa − {c|d}, whi
h is

positive. Now 
onsider the 
ase when Right starts, and his possible moves

from bRLaEdR − {c|d}. If Right plays in −{c|d}, we get

• bRLaEdR − c. Then Left 
an answer to bRLa− c, whi
h is positive.

Consider now Right's possible moves in bRLaEdR
. Toppling rigtward, Right


an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive as bRLaR > {a|b} > {c|d}.
• bRLa− {c|d}, positive.
• bRLaE(dR)R − {c|d}. Then Left 
an answer to bRLa− {c|d}, whi
h

is positive.

Toppling leftward, Right 
an move to:

• bRRLaEdR − {c|d}. Then Left 
an answer to bRRLa− {c|d}, whi
h
is positive.

• LaEdR−{c|d}. Then Left 
an answer to La−{c|d}, whi
h is positive.

• aREdR−{c|d}. Then Left 
an answer to aR−{c|d}, whi
h is positive.

• dR − {c|d}. Then Left 
an answer to dR − d, whi
h is positive.

• (dR)R − {c|d}. Then Left 
an answer to (dR)R − d, whi
h is positive.

�

Lemma B.14 Let a, b, c, d be numbers su
h that a > b > c > d.
For any Right option cR obtained from c toppling rightward, we have

bRLaEdRLcR > {c|d}.

Proof. We prove Left has a winning strategy in bRLaEdRLcR − {c|d}
whoever plays �rst. When Left starts, she 
an move to bRLa−{c|d}, whi
h
is positive. Now 
onsider the 
ase when Right starts, and his possible moves

from bRLaEdRLcR − {c|d}. If Right plays in −{c|d}, we get

• bRLaEdRLcR − c. Then Left 
an answer to bRLa − c, whi
h is

positive.

Consider now Right's possible moves in bRLaEdRLcR. Toppling rightward,
Right 
an move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive as bRLaR > {a|b} > {c|d}.
• bRLa− {c|d}, positive.
• bRLaEdR − {c|d}. Then Left 
an answer to bRLa − {c|d}, whi
h is

positive.
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• bRLaEd− {c|d}, positive.
• bRLaEdRL(cR)R−{c|d}. Then Left 
an answer to cR−{c|d}, whi
h

is positive by Corollary 3.34.

Toppling leftward, Right 
an move to:

• bRRLaEdRLcR − {c|d}. Then Left 
an answer to bRRLa − {c|d},
whi
h is positive.

• LaEdRLcR − {c|d}, positive by Lemma B.6.

• aREdRLcR − {c|d}. Then Left 
an answer to aR − {c|d}, whi
h is

positive.

• dRLcR − {c|d}, positive by Lemma 3.39.

• dRRLcR−{c|d}. Then Left 
an answer to cR−{c|d}, whi
h is positive

by Corollary 3.34.

• LcR − {c|d}, positive by Corollary 3.34.

• (cR)R − {c|d}, positive by Corollary 3.34.

�

We 
an now prove the following 
laim.

Claim B.15 Let a, b, c, d be numbers su
h that a > b > c > d. We have

bRLaEdRLc =
{
{a|b}

∣∣{c|d}
}
.

Proof. To prove that bRLaEdRLc =
{
{a|b}

∣∣{c|d}
}
, we prove that the se
-

ond player has a winning strategy in bRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. With-

out loss of generality, we may assume Right starts the game, and 
onsider

his possible moves from bRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. If Right plays in

−
{
{a|b}

∣∣{c|d}
}
, we get

• bRLaEdRLc − {a|b}. Then Left 
an answer to bRLa − {a|b} whi
h

has value 0.

Consider now Right's possible move in bRLaEdRLc. Toppling rightward,

Right 
an move to:

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to bR − {c|d}, whi
h is

positive.

• b−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to b−{c|d}, whi
h is positive.

• bRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to aR−

{
{a|b}

∣∣{c|d}
}
,

whi
h is positive.

• bRLa−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to bRLa−{c|d}, whi
h

is positive.

• bRLaEdR−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to bRLaEdR−{c|d},

whi
h is positive by Lemma B.13.

• bRLaEd−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to bRLaEd−{c|d},

whi
h is positive.

• bRLaEdRLcR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

bRLaEdRLcR − {c|d}, whi
h is positive by Lemma B.14.

Toppling leftward, Right 
an move to:
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• bRRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

bRRLa−
{
{a|b}

∣∣{c|d}
}
, whi
h is positive by Lemma B.9.

• LaEdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

La−
{
{a|b}

∣∣{c|d}
}
, whi
h is positive.

• aREdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to

aR −
{
{a|b}

∣∣{c|d}
}
, whi
h is positive.

• dRLc−
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to dRLc− {c|d} whi
h

has value 0.
• dRRLc −

{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to dRRLc − {c|d},

whi
h is positive by Lemma 3.40.

• Lc −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to Lc − {c|d}, whi
h is

positive by Corollary 3.34.

• cR −
{
{a|b}

∣∣{c|d}
}
. Then Left 
an answer to cR − {c|d}, whi
h is

positive by Corollary 3.34.

�

As an example, here is a representation of

{
{5
2 |1}

∣∣{−1
4 | −

1
2}
}
:

B.3 Proof of Lemma 3.80

Lemma 3.80

1. ∀n > 1, x2nB ≡+ 3
4 and x2n−1B ≡+ 1

2 .

2. ∀n > 0, Bx2nB ≡+ 1 and Bx2n+1B ≡+ 3
2 .

3. ∀n > 0, Bx2nW ≡+ 0 and Bx2n+1W ≡+ ∗.

4. ∀n > 0,m > 0, x2nBx2mB >+ 1, x2n+1Bx2m+1B >+ 1,
x2n+1Bx2mB >+ 3

4 and x2nBx2m+1B >+ 3
4 .

5. ∀n > 0,m > 0, x2nBx2mW >+ −1
4 , x

2n+1Bx2m+1W >+ −1
4 ,

x2n+1Bx2mW >+ −1
2 and x2nBx2m+1W >+ −1

2 .

6. ∀n > 0,m > 0, Bx2nBx2mB >+ 3
2 , Bx2n+1Bx2m+1B >+ 3

2 ,

Bx2n+1Bx2mB >+ 3
2 and Bx2nBx2m+1B >+ 3

2 .

7. ∀n > 0,m > 0, Bx2nBx2mW >+ 0, Bx2n+1Bx2m+1W >+ 0,
Bx2n+1Bx2mW >+ 1

2 and Bx2nBx2m+1W >+ 1
2 .

Proof. We show the results by indu
tion on the number of verti
es of the

graph.

We start with 1. First 
onsider Left plays �rst, and all her possible moves

from x2nB. She 
an move to:
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• x2n−1WB, whi
h has value x2n−1W +B, having value

1
2 by indu
tion.

• W + oWx2n−2B, having value at most W + x2n−1B whi
h is negative

by indu
tion.

• xiWo+W +oWx2n−i−3B, having value at most xi+1+W +x2n−i−2B
whi
h is negative by indu
tion.

• x2n−2Wo+W , having value at most x2n−1 +W whi
h is negative by

indu
tion.

• xiWx2n−i−1B, whi
h has value at most

1
2 by indu
tion.

• x2n−1Wo, whi
h has value at most x2n, having value 0.

Now 
onsider Right plays �rst, and all his possible moves from x2nB. He


an move to:

• x2n−1BB, whi
h has value x2n−1 +B having value 1 or 1∗.
• B + oBx2n−2B, having value at least B + x2n−1B whi
h has value

3
2 .

• xiBo+ B + oBx2n−i−3B, having value at least xi+1 + B + x2n−i−2B
whi
h has value more than 1.

• x2n−2Bo+B+B, having value at least x2n−1+B+B whi
h has value

2 or 2∗.
• xiBx2n−i−1B, whi
h has value more than

3
4 by indu
tion.

Now 
onsider Left plays �rst, and all her possible moves from x2n−1B.

She 
an move to:

• x2n−2WB, whi
h has value

1
4 by indu
tion.

• W + oWx2n−3B, having value at most W +x2n−2B whi
h is negative.

• xiWo+W +oWx2n−i−4B, having value at most xi+1+W +x2n−i−3B
whi
h is negative.

• x2n−3Wo+W , having value at most x2n−2 +W whi
h is negative.

• xiWx2n−i−2B, whi
h has value at most

1
4 by indu
tion.

• x2n−2Wo, whi
h has value at most x2n−1
, having value 0 or ∗.

Now 
onsider Right plays �rst, and all his possible moves from x2n−1B. He


an move to:

• x2n−2BB, whi
h has value 1.
• B + oBx2n−3B, having value at least B + x2n−2B whi
h has value

7
4 .

• xiBo+ B + oBx2n−i−4B, having value at least xi+1 + B + x2n−i−3B
whi
h has value more than 1.

• x2n−3Bo+B+B, having value at least x2n−2+B+B whi
h has value

2.
• xiBx2n−i−2B, whi
h has value at least 1 by indu
tion.

We now prove 2. As BB ≡+ 1 and BxB ≡+ 3
2 has been established

earlier, we 
an 
onsider n > 1.
First 
onsider Left plays �rst, and all her possible moves from Bx2nB.

She 
an move to:

• oWx2n−1B, having value at most x2nB whi
h has value

3
4 .

• BxiWo + W + oWx2n−i−3B, whi
h has value at most

Bxi+1 +W + x2n−i−2B, having value at most

1
4 .
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• BWx2n−1B whi
h has value 1∗.
• BxiWx2n−i−1B. Without loss of generality, we may assume i is odd.

Then Right 
an answer to Bxi−1BWx2n−i−1B, having value 1, and
proving that BxiWx2n−i−1B has a value that is not 1 or more.

Now 
onsider Right plays �rst, and all his possible moves from Bx2nB. He


an move to:

• B+B+ oBx2n−2B, whi
h has value at least B+B+x2n−1B, having

value

5
2 .

• BxiBo + B + oBx2n−i−3B, whi
h has value at least

Bxi+1 +B + x2n−i−2B, having value at least

9
4 .

• BBx2n−1B whi
h has value

3
2 .

• BxiBx2n−1B whi
h has value at least

3
2 .

Now 
onsider Left plays �rst, and all her possible moves from Bx2n+1B. She


an move to:

• oWx2nB, having value at most x2n+1B whi
h has value

1
2 .

• W +oWx2n−1B, whi
h has value at most W +x2nB having value −1
4 .

• BxiWo + W + oWx2n−i−2B, whi
h has value at most

Bxi+1 +W + x2n−i−1B, having value at most

1
2 .

• BWx2nB whi
h has value 1.
• BxiWx2n−iB. Then Right 
an answer to Bxi−1BWx2n−iB, having

value 1∗ or

3
2 , and proving that BxiWx2n−iB has a value that is not

3
2 or more.

Now 
onsider Right plays �rst, and all his possible moves from Bx2n+1B.

He 
an move to:

• B + B + oBx2n−1B, whi
h has value at least B + B + x2nB, having

value

11
4 .

• BxiBo + B + oBx2n−i−2B, whi
h has value at least

Bxi+1 +B + x2n−i−1B, having value at least 2.
• BBx2nB whi
h has value

7
4 .

• BxiBx2n−iB whi
h has value more than

3
2 .

We now prove 3. Bx2nW ≡+ 0 follows from Theorem 3.51. From

Bx2n+1W , Left 
an move to BWx2nW having value 0, and Right 
an move

to Bx2nBW having value 0.
We now prove 4. If m = 0, x2nBx2mB has value 1 and x2n+1Bx2mB has

value 1 or 1∗, hen
e for these two 
ases, we may 
onsider m > 1. If n = 0,
x2nBx2mB has value 1 and x2nBx2m+1B has value

3
2 , hen
e for these two


ases, we may 
onsider n > 1. Consider Right plays �rst, and his possible

moves from x2nBx2mB − 1. He 
an move to:

• x2nBx2mB. Then Left 
an answer to x2nBWx2m−1B, whi
h has value

3
4∗.

• B +Bx2n−2Bx2mB − 1, having value more than

3
2 .

• xiBo + B + oBx2n−i−3Bx2mB − 1, whi
h has value at least

xi+1 +B + x2n−i−2Bx2mB − 1 having value more than

3
4 .
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• x2n−2Bo + B + Bx2mB − 1, whi
h has value at least

x2n−1 +B +Bx2mB − 1, having value 1 or 1∗.
• x2nB + B + oBx2m−2B − 1, whi
h has value at least

x2nB +B + x2m−1B − 1, having value

5
4 .

• x2nBxiBo + B + oBx2m−i−3B − 1, whi
h has value at least

x2noxi+1 +B + x2m−i−2B − 1, having value at least

1
2 or

1
2∗.

• x2nBx2m−2Bo + B + B − 1, whi
h has value at least

x2nox2m−1 +B +B − 1, having value 1 or 1∗.
• Bx2n−1Bx2mB − 1, having value at least

1
2 .

• xiBx2n−i−1Bx2mB − 1. Then Left 
an answer to

xiBWx2n−i−2Bx2mB − 1, having value at least 0 when i is

odd, or to xi−1WBx2n−i−1Bx2mB − 1, having value at least 0 when

i is even.
• x2n−1BBx2mB − 1, having value at least x2n−1B + x2mB − 1, whi
h

has value

1
4 .

• x2nBxiBx2m−i−1B − 1. Then Left 
an answer to

x2n−1WBxiBx2m−i−1B − 1, whi
h has value at least 0.

Consider Right plays �rst, and his possible moves from x2n+1Bx2m+1B − 1.
He 
an move to:

• x2n+1Bx2m+1B. Then Left 
an answer to x2n+1BWx2mB, whi
h has

value

1
2 .

• B +Bx2n−1Bx2m+1B − 1, having value more than

3
2 .

• xiBo + B + oBx2n−i−2Bx2m+1B − 1, whi
h has value at least

xi+1 +B + x2n−i−1Bx2m+1B − 1 having value more than

3
4 .

• x2n−1Bo + B + Bx2m+1B − 1, whi
h has value at least

x2n +B +Bx2m+1B − 1, having value

3
2 .

• x2n+1B + B + oBx2m−1B − 1, whi
h has value at least

x2n+1B +B + x2mB − 1, having value

5
4 .

• x2n+1BxiBo + B + oBx2m−i−2B − 1, whi
h has value at least

x2n+1oxi+1 +B + x2m−i−1B − 1, having value at least

1
2 or

1
2∗.

• x2n+1Bx2m−1Bo + B + B − 1, whi
h has value at least

x2n+1ox2m +B +B − 1, having value at least 1 or 1∗.
• Bx2nBx2m+1B − 1, having value at least

1
2 .

• xiBx2n−iBx2m+1B − 1. Then Left 
an answer to

xiBWx2n−i−1Bx2m+1B − 1, having value at least 0 when i is

odd, or to xi−1WBx2n−iBx2m+1B − 1, having value at least 0 when

i is even.
• x2nBBx2m+1B−1, having value at least x2nB + x2mB − 1, whi
h has

value

1
2 .

• x2n+1BxiBx2m−iB − 1. Then Left 
an answer to

x2n+1BWxi−1Bx2m−iB − 1, whi
h has value at least 0.

If Left plays �rst in x2n+1Bx2mB− 3
4 , she 
an move to x2n+1Bx2m−1WB− 3

4 ,

having value at least 0. Now 
onsider Right plays �rst, and his possible moves
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from x2n+1Bx2mB − 3
4 . He 
an move to:

• x2n+1Bx2mB − 1
2 . Then Left 
an answer to x2n+1Bx2m−1WB − 1

2 ,

whi
h has value at least

1
4 .

• B +Bx2n−1Bx2mB − 3
4 , having value at least

7
4 .

• xiBo + B + oBx2n−i−2Bx2mB − 3
4 , whi
h has value at least

xi+1 +B + x2n−i−1Bx2mB − 3
4 having value more than 1.

• x2n−1Bo + B + Bx2mB − 3
4 , whi
h has value at least

x2n +B +Bx2mB − 3
4 , having value

5
4 .

• x2n+1B + B + oBx2m−2B − 3
4 , whi
h has value at least

x2n+1B +B + x2m−1B − 3
4 , having value

5
4 .

• x2n+1BxiBo + B + oBx2m−i−3B − 3
4 , whi
h has value at least

x2n+1oxi+1 +B + x2m−i−2B − 3
4 , having value at least

3
4 or

3
4∗.

• x2n+1Bx2m−2Bo + B + B − 3
4 , whi
h has value at least

x2n+1ox2m−1 +B +B − 3
4 , having value

5
4 or

5
4∗.

• Bx2nBx2mB − 3
4 , having value more than

3
4 .

• xiBx2n−iBx2mB − 3
4 . Then Left 
an answer to

xi−1WBx2n−iBx2mB − 3
4 , having value at least 0.

• x2n+1BxiBx2m−i−1B − 3
4 . Then Left 
an answer to

x2nWBxiBx2m−i−1B − 3
4 , whi
h has value at least 0.

If Left plays �rst in x2nBx2m+1B − 3
4 , she 
an move to x2nBWx2mB − 3

4 ,

having value 0. Now 
onsider Right plays �rst, and his possible moves from

x2nBx2m+1B − 3
4 . He 
an move to:

• x2nBx2m+1B − 1
2 . Then Left 
an answer to x2nBWx2mB − 1

2 , whi
h

has value

1
4 .

• B +Bx2n−2Bx2m+1B − 3
4 , having value at least

7
4 .

• xiBo + B + oBx2n−i−3Bx2m+1B − 3
4 , whi
h has value at least

xi+1 +B + x2n−i−2Bx2m+1B − 3
4 , having value more than 1.

• x2n−2Bo + B + Bx2m+1B − 3
4 , whi
h has value at least

x2n−1 +B +Bx2m+1B − 3
4 , having value at least

7
4 or

7
4∗.

• x2nB + B + oBx2m−1B − 3
4 , whi
h has value at least

x2nB +B + x2mB − 3
4 , having value

7
4 .

• x2nBxiBo + B + oBx2m−i−2B − 3
4 , whi
h has value at least

x2noxi+1 +B + x2m−i−1B − 3
4 , having value at least

3
4 or

3
4∗.

• x2nBx2m−1Bo + B + B − 3
4 , whi
h has value at least

x2nox2m +B +B − 3
4 , having value

5
4 or

5
4∗.

• Bx2n−1Bx2m+1B − 3
4 , having value more than

3
4 .

• xiBx2n−i−1Bx2m+1B − 3
4 . Then Left 
an answer to

xi−1WBx2n−i−1Bx2m+1B − 3
4 , whi
h has value at least 0.

• x2nBxiBx2m−iB − 3
4 . Then Left 
an answer to

x2n−1WBxiBx2m−iB − 3
4 , whi
h has value more than

1
4 .

We now prove 5. If n = 0, x2nBx2mW has value 0 and x2nBx2m+1W
has value ∗, hen
e for these two 
ases, we may 
onsider n > 1. If m = 0,
x2nBx2mW has value −1

4 and x2n+1Bx2mW has value −1
2 , hen
e for these
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two 
ases, we may 
onsiderm > 1. Consider Right plays �rst and his possible
moves from x2nBx2mW + 1

4 . He 
an move to:

• x2nBx2mW + 1
2 . Then Left 
an answer to x2n−1WBx2mW + 1

2 , whi
h

has value 0.
• B + oBx2n−2Bx2mW + 1

4 , whi
h has value at least

B + x2n−1Bx2mW + 1
4 , having value at least 1.

• xiBo + B + oBx2n−i−3Bx2mW + 1
4 , whi
h has value at least

xi+1 +B + x2n−i−2Bx2mW + 1
4 , having value at least

3
4 or

3
4∗.

• x2n−2Bo + B + Bx2mW + 1
4 , whi
h has value at least

x2n−1 +B +Bx2mW + 1
4 , having value

5
4 or

5
4∗.

• x2nB + B + oBx2m−2W + 1
4 , whi
h has value at least

x2nB +B + x2m−1W + 1
4 , having value

3
2 .

• x2nBxiBo + B + oBx2m−i−3W + 1
4 , whi
h has value at least

x2noxi+1 +B + x2m−i−2W + 1
4 , having value

1
2 or

1
2∗.

• x2nBx2m−2Bo+B + 1
4 , whi
h has value at least x2nox2m−1 +B + 1

4 ,

having value

5
4 or

5
4∗.

• x2nBx2m−1Bo+ 1
4 , whi
h has value at least x2nox2m + 1

4 , having value
1
4 or

1
4∗.

• xiBx2n−i−1Bx2mW + 1
4 . Then Left 
an answer to

xiBx2n−i−2WBx2mW + 1
4 , whi
h has value at least 0.

• x2n−1BBx2mW+ 1
4 , having value at least x

2n−1B + x2mW + 1
4 , whi
h

has value 0.
• x2nBxiBx2m−i−1W + 1

4 . Then Left 
an answer to

x2n−1WBxiBx2m−i−1W + 1
4 , whi
h has value at least

1
4 .

Consider Right plays �rst and his possible moves from x2n+1Bx2m+1W + 1
4 .

He 
an move to:

• x2n+1Bx2m+1W + 1
2 . Then Left 
an answer to x2n+1BWx2mW + 1

2 ,

whi
h has value 0.
• B + oBx2n−1Bx2m+1W + 1

4 , whi
h has value at least

B + x2nBx2m+1W + 1
4 , having value at least 1.

• xiBo + B + oBx2n−i−2Bx2m+1W + 1
4 , whi
h has value at least

xi+1 +B + x2n−i−1Bx2m+1W + 1
4 , having value at least

3
4 or

3
4∗.

• x2n−1Bo + B + Bx2m+1W + 1
4 , whi
h has value at least

x2n +B +Bx2m+1W + 1
4 , having value

5
4∗.

• x2n+1B + B + oBx2m−1W + 1
4 , whi
h has value at least

x2n+1B +B + x2mW + 1
4 , having value 1.

• x2n+1BxiBo + B + oBx2m−i−2W + 1
4 , whi
h has value at least

x2n+1oxi+1 +B + x2m−i−1W + 1
4 , having value at least

1
2 or

1
2∗.

• x2n+1Bx2m−1Bo+B+ 1
4 , whi
h has value at least x2n+1ox2m +B + 1

4 ,

having value

5
4 or

5
4∗.

• x2n+1Bx2mBo+ 1
4 , whi
h has value at least x2n+1ox2m+1 + 1

4 , having

value

1
4 or

1
4∗.

• xiBx2n−iBx2m+1W + 1
4 . Then Left 
an answer to
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xiBx2n−iBWx2mW + 1
4 , whi
h has value at least

1
4 .

• x2n+1BBx2mW + 1
4 , whi
h has value at least x2n+1 +Bx2mW + 1

4 ,

having value

1
4 or

1
4∗.

• x2n+1BxiBx2m−iW + 1
4 . Then Left 
an answer to

x2n+1Bxi−1WBx2m−iW + 1
4 , whi
h has value at least 0 when i

is even, or to x2n+1BxiBWx2m−i−1W + 1
4 , whi
h has value at least

1
4

when i is odd.
• x2n+1Bx2mBW + 1

4 , having value more than 0.

Consider Right plays �rst and his possible moves from x2n+1Bx2mW + 1
2 .

He 
an move to:

• x2n+1Bx2mW +1. Then Left 
an answer to x2nWBx2mW +1, whi
h
has value

1
4 .

• B+oBx2n−1Bx2mW+1
2 , whi
h has value at leastB + x2nBx2mW + 1

2 ,

having value at least

5
4 .

• xiBo + B + oBx2n−i−2Bx2mW + 1
2 , whi
h has value at least

xi+1 +B + x2n−i−1Bx2mW + 1
2 , having value at least 1 or 1∗.

• x2n−1Bo + B + Bx2mW + 1
2 , whi
h has value at least

x2n +B +Bx2mW + 1
2 , having value

3
2 .

• x2n+1B + B + oBx2m−2W + 1
2 , whi
h has value at least

x2n+1B +B + x2m−1W + 1
2 , having value

3
2 .

• x2n+1BxiBo + B + oBx2m−i−3W + 1
2 , whi
h has value at least

x2n+1oxi+1 +B + x2m−i−2W + 1
2 , having value at least

3
4 or

3
4∗.

• x2n+1Bx2m−2Bo + B + 1
2 , whi
h has value at least

x2n+1ox2m−1 +B + 1
2 , having value

3
2 or

3
2∗.

• x2n+1Bx2m−1Bo+ 1
2 , whi
h has value at least x2n+1ox2m + 1

2 , having

value

1
2 or

1
2∗.

• xiBx2n−iBx2mW + 1
2 . Then Left 
an answer to

xiBx2n−i−1WBx2mW + 1
2 , whi
h has value at least 0.

• x2nBBx2mW + 1
2 , whi
h has value at least x2nB+ x2mW + 1

2 , having

value

1
2 .

• x2n+1BxiBx2m−i−1W + 1
2 . Then Left 
an answer to

x2nWBxiBx2m−i−1W + 1
2 , whi
h has value at least

1
4 .

Consider Right plays �rst and his possible moves from x2nBx2m+1W + 1
2 .

He 
an move to:

• x2nBx2m+1W + 1. Then Left 
an answer to x2n−1WBx2m+1W + 1,
whi
h has value

1
2∗.

• B + oBx2n−2Bx2m+1W + 1
2 whi
h has value at least

B + x2n−1Bx2m+1W + 1
2 , having value at least 1.

• xiBo + B + oBx2n−i−3Bx2m+1W + 1
2 , whi
h has value at least

xi+1 +B + x2n−i−2Bx2m+1W + 1
2 , having value at least 1 or 1∗.

• x2n−2Bo + B + Bx2m+1W + 1
2 , whi
h has value at least

x2n−1 +B +Bx2m+1W + 1
2 , having value

3
2 or

3
2∗.

• x2nB + B + oBx2m−1W + 1
2 , whi
h has value at least
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x2nB +B + x2mW + 1
2 , having value

3
2 .

• x2nBxiBo + B + oBx2m−i−2W + 1
2 , whi
h has value at least

x2noxi+1 +B + x2m−i−1W + 1
2 , having value at least

3
4 or

3
4∗.

• x2nBx2m−1Bo + B + 1
2 , whi
h has value at least x2nox2m +B + 1

2 ,

having value

3
2 or

3
2∗.

• x2nBx2m−1Bo+ 1
2 , whi
h has value at least x2nox2m + 1

2 , having value
1
2 or

1
2∗.

• xiBx2n−i−1Bx2m+1W + 1
2 . Then Left 
an answer to

xiBx2n−i−2WBx2m+1W + 1
2 , whi
h has value at least

1
4∗.

• x2n−1BBx2m+1W+ 1
2 , whi
h has value at least x2n−1B+x2m+1W+ 1

2 ,

having value

1
2 .

• x2nBxiBx2m−iW + 1
2 . Then Left 
an answer to

x2n−1WBxiBx2m−iW + 1
2 , whi
h has value at least 0.

We now prove 6. If n = 0, Bx2nBx2mB has value

7
4 and Bx2nBx2m+1B

has value

3
2 , hen
e for these two 
ases, we may 
onsider n > 1. If m = 0,

Bx2nBx2mB has value

7
4 and Bx2n+1Bx2mB has value

3
2 , hen
e for these

two 
ases, we may 
onsider m > 1. If Left plays �rst in Bx2nBx2mB− 3
2 , she


an move to BWx2n−1Bx2mB− 3
2 whi
h has value at least 0. Now 
onsider

Right plays �rst, and his possible moves from Bx2nBx2mB− 3
2 . He 
an move

to:

• Bx2nBx2mB−1. Then Left 
an answer to BWx2n−1Bx2mB−1 whi
h
has value at least

1
2 .

• B + B + oBx2n−2Bx2mB − 3
2 , whi
h has value at least

B +B + x2n−1Bx2mB − 3
2 , having value more than

5
4 .

• BxiBo + B + oBx2n−i−3Bx2mB − 3
2 , whi
h has value at least

Bxi+1 +B + x2n−i−2Bx2mB − 3
2 , having value more than

3
4 .

• Bx2n−2Bo + B + Bx2mB − 3
2 , whi
h has value at least

Bx2n−1 +B +Bx2mB − 3
2 , having value 1.

• BxiBx2n−i−1Bx2mB − 3
2 , whi
h has value at least

BxiBx2n−i−1 + x2mB − 3
2 , having value more than 0.

If Left plays �rst in Bx2n+1Bx2m+1B − 3
2 , she 
an move to

BWx2nBx2m+1B − 3
2 whi
h has value at least 0. Now 
onsider Right plays

�rst, and his possible moves from Bx2n+1Bx2m+1B − 3
2 . He 
an move to:

• Bx2n+1Bx2m+1B − 1. Then Left 
an answer to BWx2nBx2m+1B − 1
whi
h has value at least

1
2 .

• B + B + oBx2n−1Bx2m+1B − 3
2 , whi
h has value at least

B +B + x2nBx2m+1B − 3
2 , having value more than

5
4 .

• BxiBo + B + oBx2n−i−2Bx2m+1B − 3
2 , whi
h has value at least

Bxi+1 +B + x2n−i−1Bx2m+1B − 3
2 , having value more than

3
4 .

• Bx2n−1Bo + B + Bx2m+1B − 3
2 , whi
h has value at least

Bx2n +B +Bx2m+1B − 3
2 , having value

7
4 .

• BxiBx2n−iBx2m+1B − 3
2 . Then Left 
an answer to

BxiBx2n−iBWx2mB − 3
2 , whi
h has value more than 0.
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Consider Right plays �rst, and his possible moves from Bx2n+1Bx2mB − 3
2 .

He 
an move to:

• Bx2n+1Bx2mB−1. Then Left 
an answer to BWx2nBx2mB−1 whi
h
has value at least 0.

• B + B + oBx2n−1Bx2mB − 3
2 , whi
h has value at least

B +B + x2nBx2mB − 3
2 , having value at least

3
2 .

• BxiBo + B + oBx2n−i−2Bx2mB − 3
2 , whi
h has value at least

Bxi+1 +B + x2n−i−1Bx2mB − 3
2 , having value more than

3
4 .

• Bx2n−1Bo + B + Bx2mB − 3
2 , whi
h has value at least

Bx2n +B +Bx2mB − 3
2 , having value

5
4 .

• Bx2n+1B + B + oBx2m−2B − 3
2 , whi
h has value at least

Bx2n+1B +B + x2m−1B − 3
2 , having value

3
2 .

• Bx2n+1BxiBo + B + oBx2m−i−3B − 3
2 , whi
h has value at least

Bx2n+1Bxi+1 +B + x2m−i−2B − 3
2 , having value more than

3
4 .

• Bx2n+1Bx2m−2Bo + B + B − 3
2 , whi
h has value at least

Bx2n+1Bx2m−1 +B +B − 3
2 , having value more than

5
4 .

• BxiBx2n−iBx2mB− 3
2 , whi
h has value at least BxiBx2n−i+x2mB− 3

2 ,

having value at least

1
4 .

• Bx2n+1BxiBx2m−i−1B − 3
2 . Then Left 
an answer to

Bx2nWBxiBx2m−i−1B − 3
2 , whi
h has value at least 0.

Bx2nBx2m+1B has the same value as Bx2nBx2m+1B.

We now prove 7. If n = 0, Bx2nBx2mW has value

1
4 and Bx2nBx2m+1W

has value

1
2 , hen
e for these two 
ases, we may 
onsider n > 1. If m = 0,

Bx2nBx2mW has value 0 and Bx2n+1Bx2mW has value

1
2 , hen
e for these

two 
ases, we may 
onsider m > 1. Consider Right plays �rst, and his

possible moves from Bx2nBx2mW . He 
an move to:

• B + B + oBx2n−2Bx2mW , whi
h has value at least

B +B + x2n−1Bx2mW , having value at least

3
2 .

• BxiBo + B + oBx2n−i−3Bx2mW , whi
h has value at least

Bxi+1 +B + x2n−i−2Bx2mW , having value at least 1.
• Bx2n−2Bo + B + Bx2mW , whi
h has value at least

Bx2n−1 +B +Bx2mW , having value

3
2 .

• Bx2nB + B + oBx2m−2W , whi
h has value at least

Bx2nB +B + x2m−1W , having value

3
2 .

• Bx2nBxiBo + B + oBx2m−i−3W , whi
h has value at least

Bx2nBxi+1 +B + x2m−i−2W , having value more than 1.
• Bx2nBx2m−2Bo+B, whi
h has value at least Bx2nBx2m−1 +B, hav-

ing value more than

7
4 .

• Bx2nBx2m−1Bo, whi
h has value at least Bx2nBx2m, having value at

least 1.
• BBx2n−1Bx2mW , having value at least

1
2 .

• BxiBx2n−i−1Bx2mW . Then Left 
an answer to

BxiBx2n−i−2WBx2mW , whi
h has value at least 0.
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• Bx2n−1BBx2mW , whi
h has value at least Bx2n−1 +Bx2mW , having

value at least

1
2 .

• Bx2nBxiBx2m−i−1W . Then Left 
an answer to

Bx2n−1WBxiBx2m−i−1W , whi
h has value at least

1
2∗.

Consider Right plays �rst, and his possible moves from Bx2n+1Bx2m+1W .

He 
an move to:

• B + B + oBx2n−1Bx2m+1W , whi
h has value at least

B +B + x2nBx2m+1W , having value at least

3
2 .

• BxiBo + B + oBx2n−i−2Bx2m+1W , whi
h has value at least

Bxi+1 +B + x2n−i−1Bx2m+1W , having value at least 1.
• Bx2n−1Bo + B + Bx2m+1W , whi
h has value at least

Bx2n +B +Bx2m+1W , having value

7
4∗.

• Bx2n+1B + B + oBx2m−1W , whi
h has value at least

Bx2n+1B +B + x2mW , having value

7
4 .

• Bx2n+1BxiBo + B + oBx2m−i−2W , whi
h has value at least

Bx2n+1Bxi+1 +B + x2m−i−1W , having value more than 1.
• Bx2n+1Bx2m−1Bo + B, whi
h has value at least Bx2n+1Bx2m +B,

having value more than

7
4 .

• Bx2n+1Bx2mBo, whi
h has value at least Bx2n+1Bx2m+1
, having

value at least 1.
• BBx2nBx2m+1W , having value at least

1
2 .

• BxiBx2n−iBx2m+1W . Then Left 
an answer to

BxiBx2n−i−1WBx2m+1W , whi
h has value at least

1
2∗.

• Bx2nBBx2m+1W , whi
h has value at least Bx2n +Bx2m+1W , having

value

3
4∗.

• Bx2n+1BxiBx2m−iW . Then Left 
an answer to

Bx2nWBxiBx2m−iW , whi
h has value at least 0.

Consider Right plays �rst, and his possible moves from Bx2n+1Bx2mW − 1
2 .

He 
an move to:

• Bx2n+1Bx2mW . Then Left 
an answer to Bx2nWBx2mW , whi
h has

value 0.
• B + B + oBx2n−1Bx2mW − 1

2 , whi
h has value at least

B +B + x2nBx2mW − 1
2 , having value at least

5
4 .

• BxiBo + B + oBx2n−i−2Bx2mW − 1
2 , whi
h has value at least

Bxi+1 +B + x2n−i−1Bx2mW − 1
2 , having value at least

1
2 .

• Bx2n−1Bo + B + Bx2mW − 1
2 , whi
h has value at least

Bx2n +B +Bx2mW − 1
2 , having value

5
4 .

• Bx2n+1B + B + oBx2m−2W − 1
2 , whi
h has value at least

Bx2n+1B +B + x2m−1W − 1
2 , having value

3
2 .

• Bx2n+1BxiBo + B + oBx2m−i−3W − 1
2 , whi
h has value at least

Bx2n+1Bxi+1 +B + x2m−i−2W − 1
2 , having value more than

3
4 .

• Bx2n+1Bx2m−2Bo + B − 1
2 , whi
h has value at least

Bx2n+1Bx2m−1 +B − 1
2 , having value at least

3
2 .
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• Bx2n+1Bx2m−1Bo − 1
2 , whi
h has value at least Bx2n+1Bx2m − 1

2 ,

having value more than

1
4 .

• BBx2nBx2mW − 1
2 , having value at least

1
4 .

• BxiBx2n−iBx2mW − 1
2 . Then Left 
an answer to

BxiBx2n−i−1WBx2mW − 1
2 , whi
h has value at least 0.

• Bx2nBBx2mW − 1
2 , whi
h has value at least Bx2n +Bx2mW − 1

2 ,

having value at least

1
4 .

• Bx2n+1BxiBx2m−i−1W − 1
2 . Then Left 
an answer to

Bx2nWBxiBx2m−i−1W − 1
2 , whi
h has value at least 0.

Consider Right plays �rst, and his possible moves from Bx2nBx2m+1W − 1
2 .

He 
an move to:

• Bx2nBx2m+1W . Then Left 
an answer to Bx2nBWx2mW , whi
h has

value 0.
• B + B + oBx2n−2Bx2m+1W − 1

2 , whi
h has value at least

B +B + x2n−1Bx2m+1W − 1
2 , having value at least 1.

• BxiBo + B + oBx2n−i−3Bx2m+1W − 1
2 , whi
h has value at least

Bxi+1 +B + x2n−i−2Bx2m+1W − 1
2 , having value at least

1
2 .

• Bx2n−2Bo + B + Bx2m+1W − 1
2 , whi
h has value at least

Bx2n−1 +B +Bx2m+1W − 1
2 , having value 1∗.

• Bx2nB + B + oBx2m−1W − 1
2 , whi
h has value at least

Bx2nB +B + x2mW − 1
2 , having value

3
4 .

• Bx2nBxiBo + B + oBx2m−i−2W − 1
2 , whi
h has value at least

Bx2nBxi+1 +B + x2m−i−1W − 1
2 , having value more than

3
4 .

• Bx2nBx2m−1Bo+B− 1
2 , whi
h has value at least Bx2nBx2m +B − 1

2 ,

having value at least

3
2 .

• Bx2nBx2mBo− 1
2 , whi
h has value at least Bx2nBx2m+1 − 1

2 , having

value more than

1
4 .

• BxiBx2n−i−1Bx2m+1W − 1
2 . Then Left 
an answer to

BxiBx2n−i−1BWx2mW − 1
2 , whi
h has value at least 0.

• Bx2nBBx2mW − 1
2 , whi
h has value at least Bx2n +Bx2mW − 1

2 ,

having value

1
4 .

• Bx2nBxiBx2m−iW − 1
2 . Then Left 
an answer to

Bx2nBxiBWx2m−i−1W − 1
2 , whi
h has value at least 0 when i

is odd, or to Bx2nBxi−1WBx2m−iW − 1
2 , whi
h has value at least 0

when i is even.
• Bx2nBx2mBW − 1

2 , having value more than 0.

�
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