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Abstract

We analyse TIMBER, a game played on a graphs. We find the P
positions for both normal and misére play on paths and show how to
win the game. In passing, we also show a correspondence with Dyck
paths, the Catalan and Fine numbers. We present an algorithm for
winning the Normal Play game on trees.

1 Introduction

The game of TIMBER arises out of the coming together (loosely) of the work
of C. Mynhardt’s work on “altitude” and “depression” on graphs, see [8, 9]
for examples, and an offshoot of the game TOPPLING DOMINOES. The game
TIMBER is played on a directed graph, with a domino on each edge. The
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edges will be denoted by (z,y) with the arc starting at « and ending at y.
There are two players, herein called Alice and Bob, moving alternately. On
a move, the player chooses a domino on some edge, say, (z,y) and topples
it in the direction of y. (This is the only time the direction of the edge is
important.) The domino then topples the dominoes on the edges incident
with y, independent of whether the edge is directed into or away from v,
and the process of toppling the dominoes continues until no more dominoes
topple. The toppled dominoes and corresponding edges are removed from
the graph. More formally, let G be a graph, a TIMBER position based on
G will be denoted by G; which will be G with its edges directed. Note
that for a given G there will be many possible G;. Given a graph G, a
corresponding G; and an arc (z,y), let Y be the set of all vertices that can
be reached by a path in G starting at y and not having x as the second
vertex. Choosing to topple the domino on the arc (z,y) removes Y and
all edges incident with Y from G and G;. For example, see Figure 1. We
invite the reader to find the unique winning move in this position.
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Figure 1: Example and Problem

toppling x leaves

We will attempt to make the paper self-contained but the reader can
consult [1, 2] for more details on game theory. Under Normal play, the first
player who cannot move is the loser; under miséere play this player would
be the winner. TIMBER is an impartial game, since both players have the
same moves available, i.e., Alice and Bob can start with any domino. In
impartial games there are just two outcome classes: N-positions in which
the Next player to move can force a win; and P-positions in which the next
player cannot force a win but the Previous player can. In Normal play,
the end position is a P-position (since the next player has no move at all
and therefore has no way to force a win) and it would be an N-position in
misere play. Note that the outcome classes can be determined recursively



starting with the end of the game. From a position Gy, if a player can move
to a P-position then Gy is an N -position, otherwise G; is a P-position. We
write, 07 (G¢) for the outcome class of the position G; under Normal play
and o~ (Gt) under misere play.

Since TIMBER could be played on a set of disconnected components we
should be using the Sprague-Grundy theory for impartial games, however,
we found the game was too complicated for us to solve at this level of detail,
even on a path. We do completely characterize the outcome class for all Gy,
where G is any connected graph, under Normal play and find the misere
outcome classes where G is a path or a 2-connected graph.

Our first result shows that, for most graphs, the outcome class is very
easy to calculate.

Theorem 1.1 If G is a connected graph with a 2-connected subgraph then
for any Gi, o™ (Gy) = N. If G is a 2-connected graph then for any G,
o (Gt) =P.

Proof. Let G be a connected graph and G; be some TIMBER position
of G. Let zy be an edge of G in the 2-connected subgraph and (z,y)
the corresponding arc in G¢. Toppling the domino on (z,y) causes all the
dominoes to be toppled. In Normal play, this is a winning move. In misere
play it is a losing move and if G is 2-connected the next player only has
losing moves. (]

Thus, in Normal Play, only graphs which are trees need be considered.
The paper is divided into two main sections. In Section 2, TIMBER played
on a path is analyzed. Although the algorithm for trees could be used
to analyze the game on paths, the path analysis uncovers relationships
to Dyck paths, Catalan and Fine numbers and is worthy of independent
investigation. The Normal play version on paths was the original game
analyzed by Lamoureux, Mellon, and Miller as a first year class project at
Dalhousie University, supervised by the first author. The game was called
TOPPLING PEAKS. See Section 2 and Figure 2 to see how the game got
its name and why a possible relationship to ‘altitude’ and ‘depressions’ of
graphs could be inferred. Nowakowski and Renault then found the misere
analysis and generalized the game to graphs in general. In Section 3, we give
areduction algorithm to determine the outcome class of a tree. Surprisingly,
nimbers are required even though we are only investigating outcome classes.
In the last section we raise some questions.



2 TIMBER on paths.

TIMBER on paths, also called TOPPLING PEAKS, arose as an impartial vari-
ant of the partizan game TOPPLING DOMINOES [5] which is played with
the same set-up: a line of dominoes, each domino marked L or R where
in TOPPLING PEAKS an L can only be toppled to the left and an R to the
right. See Figure 2.

After some preliminary analysis of TIMBER, using CGSuite [3], we quickly
determined the number of P-positions of lengthn =1,2,...,10is 0, 1, 0, 2,
0, 5, 0, 14, 0, 42, respectively. Ignoring the 0s, the On-line Encyclopedia of
Integer Sequences [11] suggests that the resulting sequence is the Catalan
numbers, n+-1 (*™). The first two references are [4, 6]. The second—
nesting and roosting habits of the laddered parenthesis—suggests a pairing
approach that is very useful in actual play. The first reference—A bijection
of Dyck paths and its consequences—gives rise to the name of the game

and hints at the solutions.

A position can be represented visually on a 2-dimensional graph: start at
(0,0) and let an L be a line joining the lattice points (z,y) and (z+1,y+1)
and R be the line joining (z,y) and (z + 1,y — 1). We’ll sometime refer
to this as the peak representation. For example, all the representations of
LLRL are given in Figure 2.

0=4+0=0>0=<9
TIMBER Peak representation

L L R L
*—o 000

TOPPLING PEAKS

Figure 2: Three representations of one position.

A Dyck path of length 2n is one of these paths that also ends at (2n,0)
and which never goes below the z-axis. See Theorems 2.3 and 2.4.

For normal play, Theorem 2.3 shows that P-positions are exactly those
positions with Dyck path representations. For misere play, there are two
types of P-positions. Theorem 2.4 shows that one kind, a subset of the
Normal play P-positions, correspond directly to the Dyck paths with no



‘peaks’ of height 1, i.e., a Dyck path with no sub-path (,0),(j +1,1), ( +
2,0) for any j. The misére P-positions of length 2n + 1 are formed from
these P-positions of length 2n by the addition of an R at the start or an
L at the end. The extra P-positions of length 2n + 2 are obtained by
adding both the L and the R dominoes. In general, the number of misere
P-positions of length 2n is the number of Dyck paths of length 2n with
no peaks of height 2 before the path returns to 0, but this is a counting
argument since the representation of a length 2n P-position does not have
to be a Dyck path and can have a peak of height 2.

2.1 The Analysis.

We will refer to the two players as ‘Alice’ and ‘Bob’ usually with Alice to
go first in a given position.

The main tool for characterizing outcome classes are the following the-
orems.

Theorem 2.1 [Partition Theorem][1][page 41] Suppose the positions of a
finite, impartial, normal-play game can be partitioned into mutually exclu-
sive sets A and B with the properties:

every option of a position in A is in B; and
every position in B has at least one option in A.

Then A is the set of P-positions and B is the set of N -positions.

Theorem 2.2 [Misére Partition Theorem] Suppose the positions of a fi-
nite, impartial, misére-play game can be partitioned into mutually exclusive
sets A and B with the properties:

every option of a position in A is in B; and
every position in B that has an option has at least one option in A.
every position with no option is in B.

Then A is the set of P-positions and B is the set of N -positions.

We now translate the intuitive ‘peak’ approach into one where it is easier
to give proofs and more useful when we consider trees.

Given the alphabet {L, R}, for a word w, let |w|r be the number of
Ls in w, |w|g the number of Rs in w and wy; ;) the subword wiw;;1 - - - wj.
Let WP be the set of words w such that for any i, |wy |z = |wjo,i|r and
lwlr = |wlg.



Theorem 2.3 In Normal play, the P-positions of TOPPLING PEAKS are
ezactly those which correspond to word of W P.

Proof. Let w € WP be a position and n its length. First let’s assume that
Alice plays on an R domino, say w;. Then Alice has moved to the position
wo,i—1]- As w € WP, |wyq|L = |wy,g|r. Hence |wy -1l = |wp,ql =
|w[0,i]|R = |w[0,i71]|R +1, and |7~U[0,171]|L # |w[0,i71]|R- So W[0,i—1] ¢ wPr.

If Alice plays on an L domino, instead, say w;. Then Alice has moved
to the position wjy1,,—1). As w € WP, |wj;—1jlL = |wy,i—1j|r. Hence
lwit1in—1)lL = 5 — [w,gle = 5§ — w1yl =1 < § = |lwp,i—ylr — 1 =
[Wiig1,n—1)lr + 1, and |wjit1 n—1)|z # [Wiit1,n—1)|rR- S0 wioi—1) € WP.

Let w ¢ WP be a position. Assume |w|p = |w|g. Let i = min{0 <
E<n-1 | |w[07k]|L < |w[07k]|R}. wg is an R domino, and |w[07k]|L =
|wio,k)|r — 1. By toppling wy, Alice moves to wjg 1) € WP. Assume now
|w|r, # |w|r. Without loss of generality, we can assume |w|p < |w|r. Let
i=min{0 <k <n—1]wowle < |worlr} wrisan R domino, and
|wio, k)| = |wio,k)|r — 1. By toppling wy, Alice moves to wyg z—1) € WP. O

Note that w € W P iff the corresponding position produces a Dyck path.

We now consider Misere play. Let ST P be the set of words w such that
w € WP and Yw;y,wy € WP, w # w1 LRw,. We define X = (SWP\{0})U
{Rw | we SWP}U{wL | w e SWP}U{RwL | w e SWP}. We note w
the word obtained from w after removing the first character if it is an R
and the last one if it is an L.

Theorem 2.4 In misere play, the P-positions of TOPPLING PEAKS are ex-
actly those which correspond to word of X.

Proof. Let w € X be a position. Assume w € (SWP\{0}). From the
normal play analysis, we know that Alice cannot move to a position in
SWP C WP. Assume Alice can move to a position Rwg with wy € SW P.
Then it follows that w = wi;LRwqy for some wy. As w,wy € WP then
wy € WP, which is not possible since w € SW P. Similarly, we can prove
Alice has no move to a position of the form woL or RwyL with wg € SW P.
Similarly, we can prove Alice has no move to a position in X from a position
in X.

Let w ¢ X U{0}. Assume w € WP. Then there exists wy,wy € WP
such that w = wiLRws, and we can choose them such that wy, € SWP.
From w, Alice can move to Rws € X. Similarly, we can prove Alice has a
move to a position in X from a position in ({Rw | w € WP}U{wL |w €
WP}U{RwL | we WP})\X.



Now assume wjg 1) = RR. Alice can move to R € X.

Now assume w is none of the above forms. w starts with an L and
ends with a R, and is not in W P, so Alice has a move from w to a position
wy € WP\{0}. Without loss of generality, we can assume it is by toppling a
domino leftward. If wg € SW P, the same move from w leaves the position
wog € X or wogl € X. Otherwise, there exists wy,wy, € WP such that
wy = w1 LRws and we can choose wy € SWP. Alice can then move from
w to Rwy € X or Rwol € X. O

2.2 Counting positions

Surprisingly, there are few games for which the number of P-positions are
known. In fact, the authors only know of [7] where the game was developed
to relate the number of P-positions to Bernoulli numbers of the second
kind. Even for the basic game of NIM with n pieces, it is not presently
known how many P-positions there are (see [11] sequence A048833).

Let WP(n), SWP(n) and X (n) be the number of P-positions of length
n respectively: (1) in normal play; (2) in misere play where the position is
a Dyck path; and (3) in misere play in general.

A peak at height k on a Dyck path is a point (j, k) of the path that is
preceded by the point (j — 1,k — 1) and followed by the point (54 1,k —1).
The Fine number, F,,, is the number of Dyck paths of length 2n without
peaks at height 1.

Theorem 2.5 Let n be a nonnegative integer, then

1. WP(n) is the number of Dyck paths of length n, specifically,

(2n)!

WPn) = S S

WP(2n +1) =0.

2. SWP(n) is the number of Dyck paths without a peak of height 1;
specifically

i
]

SWP(2n) = (—1)icn_i(%)i; SWP(2n +1) =0,

N =
-
I
o



3. X (2n) is the number of Dyck paths of length 2n without peaks at height
2 before the first return to height 0; specifically X (0) =0 and

X(2n) = F,_1+F, forn>0;
n—2
i Ly
X@2n+1) = 2SWP(2n)f;(fl) en-i(3)"

Proof. (1): From the definition, it is clear that WP is the set of TOPPLING
PEAKS positions that has a representation that is a Dyck path. Dyck paths
only have even length. It is well known that the number of Dyck path
of length 2n is the n" Catalan number ¢, = %, for example see [4]
p-194. Thus

(2n)!

WPEn) = s or

WP(2n+1) =0.

(2): Again, from the definition, it is also clear SWWP is the set of ToOP-
PLING PEAKS position that has a representation that is a Dyck path without
peaks at height 1. That is SWP(2n) = F,,. From [10], Theorem 2, we have

. 21
the recursive formulas F,, = >"7"" ¢; * F,_;_1 and

n—2 71 )
;C’H(T)Z'

(3): The number of TOPPLING PEAKS P-position of length 2n in the
misere version is F,, + Fj,_1, where the second term counts the number of
positions in SW P(2n — 2) which have had an R appended at the beginning
and an L at the end. The number of TOPPLING PEAKS P-position of length
2n 4+ 1 in the misere version is 2 % Fj,.

I, =

N | —

Let E, be the number of Dyck paths of length 2n without peaks at
height 2 before the first return to height 0. These can be counted by
starting the sequence with an L then a member of SWP(2i) (a sequence
without a peak of height 1) then an R then any member of WP(2n —2i —2)
(that is a Dyck path of length 2n — 2¢ — 2). This gives the first line in:

n—1
E, = Z Fi*xcp_i—1
i=0
n—1
= F1+ Z cixFn i1
i=1
= a1+ F,

= X(2n)



3 TIMBER on trees.

When TIMBER is played on a tree, a move is to choose an arc (z,y) and
remove from the tree the connected component containing y but not x.
There may be an immediate move that finishes the game. If there isn’t
we present a reduction algorithm each part of which preserves the outcome
class of the tree. One step removes ‘peaks’. The second merges two ‘peak’-
free paths incident with a common vertex.

The one move to finish the game is characterized first.

Lemma 3.1 Let T be a tree, v a leaf of T and x the vertex adjacent to v.
Let Ty be a TIMBER position which contains the arc (v, z), then ot (1) = N,
that is Ty is a next-player win position.

Proof. Alice wins by toppling the domino on the arc (v, x). (I

The next lemma shows that the two edges forming a ‘peak’ can be
eliminated.

Lemma 3.2 Let T}, T? be two TIMBER positions. Choose y € V(T}),
z € V(T?) and let x be a vertex disjoint from T' and T?. Let Ty be the
position with vertex set V(T) = V(T') U {z} UV (T?) and arcs E(T;) =
E(TH U {(z,y),(z,2)} U E(T}). Let T] be the position with vertexr set
V(T') = V(TYHYUV(T?) where y and z are identified, and the arcs E(T') =
E(TH U E(T?). Then o™ (Ty) = o™ (T}).

Proof. We show it by induction on the number of vertices of 7. If V(T") =
{y}, then there is no move in 7} and T} is the TOPPLING PEAKS position
LR. Hence o™ (T) =P = o™ (T"). Assume now |V (T”)| > 1. Assume Alice
has a winning move in T;. It cannot be by choosing (x,y) or (z, z) because
Bob would choose the other and win. If the chosen arc removes x from the
game, choosing the same arc in T” leaves the same position. Otherwise,
choosing the same arc in T} leaves a position which has the same outcome
by induction. Hence Alice has a winning move in 7;. The proof that Alice
has a winning move in T} if she has one in 7Y is similar. g

If the tree has been reduced to two paths directed away from a common
vertex x, then no move in either path affects the other. In either path
any number from 1 to all the edges can be removed. This is the game of



NIM played with 2 heaps. Suppose the size of the paths/heaps are m and
n. The Sprague-Grundy theory of Impartial games (see [1, 2] or numerous
other books and papers) shows that the two heaps are equivalent to playing
with one heap of size m & n where @ is the XOR of integers. (Or write
the numbers in binary and add without carrying. For example, 14 @& 5 =
11102 ® 1015 = 10115 = 11.) The next result shows that even if there is
more of the tree affixed at x, we can still make the replacement. Every
impartial game is equivalent to a playing NIM with single heap. The proof
of the next result actually shows that when this merging of paths is done,
the size of the equivalent NIM heap doesn’t change.

Lemma 3.3 Let Ty be a tree, w € V(Tp) a vertex, and n,m € N two
integers. Let Ty be the position with vertex set V(Ty) = V(T) U{yi }1<ign U
{#zi}1<i<m and arcs

E(Ty) = ET)U{(¥iyi+1) h<i<n—1
U{(2s, 2zi41) Fri<icm—1 U {(w, y1), (w, 21) }.

Let T} be the position with vertex set
V(T'") = V(T)U{zi}i<i<nom
and the arcs

E(T") = E(T) U{(#, Ziv1) ri<i<nam)—1 U {(w, 1) }.

Then ot (T}) = o (T}).

Proof. We prove it by induction on |V (Ty)|+n+m and show that ot (T} +
T}) = P which shows that o™ (T3) = o™ (T}). f n+m =0,T =To =T".

Assume now |V(Tp)| +n + m > 0. Any arc of Ty is in both T and T},
thus if Alice chooses such an edge in one of T} or 7} then Bob can choose
the corresponding arc in 7} or T:, which leaves a P position (either by
induction or because the two remaining positions are the same). Assume
Alice chooses the arc (y;,vyi+1) (or (w,y1) = (Y0,41)). If (i ®&m) < (n®m),
Bob can choose the arc (Zigm, T(i@m)+1) (or (w,x1) if i © m = 0) which
leaves a P position by induction. Otherwise, there exists j < m such that
(i®j = n&m), and Bob can choose the arc (z;,z;41) which leaves a
P position by induction. Similarly, we can prove that Bob has a winning
answer to any move of the type (z;,2;11) or (2, Zi+1)- O

A position which is neither of the form 7" for Lemma 3.2 or Lemma 3.3
is called minimal. A leaf-path is a path from some vertex z to a leaf y,
x # y, consisting only of vertices, other than y and possibly x, of degree 2.



Lemma 3.4 () is the only minimal position which is P.

Proof. Let T; be a minimal position with at least one arc. If it has exactly
one arc, it is obviously in N, so we can assume T; has at least two arcs.
Then there exist a vertex w at which there are two leaf paths {z;}1<i<n
and {yi}i<icm- I (Zn,Tn—1) Oor (Ym,Ym—1) is an arc, Alice can choose
it and win. Now assume both (z,_1,2,) and (ym—1,ym) are arcs. As T
is minimal, it cannot be of the form from Lemma 3.2, so all (z;,2;41),
(Yi, Yi+1), (w,z1) and (w,y1) are arcs. But then it is of the form of Lemma
3.3, which is a contradiction. [l

The next algorithm shows how to apply the previous results to find the
winning move, if there is one.

Algorithm 3.5 Let T be a tree and TP a TIMBER position.

1. Check each leaf x € V(Ty); if (x,y) € E(T°) then toppling the domino
on (x,y) wins, by Lemma 3.1, and ot (TY) = N and the algorithm
stops.

If no such edge exists then let n = 0.

2. Flatten: Choose a vertex x € V(T™) at which there is a leaf path P
to a leaf y and with at least one edge directed toward x. If there is
u,v,w € V(P) such that (v,u), (v,w) € B(T}") then T and T/
are the tree and position obtained by applying Lemma 3.2 by removing
v and identifying u and w. Letn :=n+ 1.

If there is a new edge, say (u,v) at the ‘leaf’ end of the path and it is
directed away from the leaf vertex, then by Lemma 3.1, and o™ (T}*) =
T = N.

If no “inward’ arc is produced, eventually all the leaf-paths from x only
have edges which are directed away from x.

8. Merge: If all vertices which have leaf-paths have all edges directed
toward the respective leaves then there is a vertexr x which has two leaf-
paths say, P, P,. Form Tt"Jrl by applying Lemma 3.3. Letn:=n+1
and repeat step 2.

The merging of paths in Step 3 makes it awkward to describe how to find
the winning move but with a little practice it becomes an easy matter for
a player to discover it. The algorithm runs in O(n?) time. Each edge is
visited most once before at least one edge is deleted or a merging (Step 3)



takes place. An edge on a merged path needs only be looked once, that in
Step 2 when it will be immediately deleted.

As an example, we solve the position given in the Introduction. That the
position is an N -position is shown by toppling the edge labelled ‘!’ in the
reduced position. This corresponds to toppling the edge labelled y. (After
toppling y the merge of the two paths results in the empty path.) Note
that the Flatten step can be applied at any appropriate degree 2 vertex at
anytime.

Merge
--—@
Flatten
Flatten __ @

-0—>0—>0

Merge

@o—»
Y

Figure 3: Example and Problem

4 Further Work

Lamoureaux, Mellon and Miller found the values of some families of posi-
tions that fit between the lines y = 0, y = 1, and y = 0, y = 2. The latter
families required an induction with 9 cases.

Problem 4.1 Is there an efficient algorithm to find the value of a TIMBER
position on a path?

In the reduction (merge) from Lemma 3.3, both trees actually have the
same value but this is not true in the reduction (flatten) of Lemma 3.2.

Problem 4.2 Is there any other reductions on trees (or paths) that pre-
serve values?



Given G and Gy, suppose we regard the dominoes as physical. If a

domino on (z,y) is toppled and there is another domino on (u,v) where
the distance (in G) from y to u is the same as distance from y to v then
this domino would have dominoes trying to topple it from both sides and
so would remain standing! Call this game PHYMINOES. Then PHYMINOES
is the same as TIMBER on bipartite graphs.

Problem 4.3 Is there an efficient algorithm to find the outcome class of a
PHYMINOES on a non-bipartite graph?
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