Complexity of the Game Domination Problem
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Abstract

The game domination number is a graph invariant that arises from a game,
which is related to graph domination in a similar way as the game chromatic num-
ber is related to graph coloring. In this paper we show that verifying whether the
game domination number of a graph is bounded by a given integer is PSPACE-
complete. This contrasts the situation of the game coloring problem whose com-
plexity is still unknown.
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1 Introduction

The domination game, introduced in [6], is played by two players on an arbitrary graph
G. The two players are called Dominator and Staller, indicating the roles they are
supposed to play in the game. They are taking turns choosing a vertex from G such
that whenever they choose a vertex, the set of vertices dominated so far increases. The
game ends when all vertices of G are dominated. The aim of Dominator is that the
total number of moves played in the game is as small as possible, while Staller wishes
to maximize this number. By Game I we mean a game in which Dominator has the
first move, while Game 2 refers to a game in which Staller begins. Assuming that both
players play optimally, the game domination number v4(G) of a graph G denotes the
number of moves played in Game 1, and the Staller-start game domination number
7y(G) the number of moves played in Game 2.

Giving a formula for the exact value of 7,(G) and 7, (G) is usually a difficult prob-
lem, and is resolved only for some very simple families of graphs G, such as paths and



cycles [17], combs [18], and line graphs of complete multipartite graphs [20]. It was
conjectured in [16] that the upper bound ~4(G) < 3/5|V(G)| holds for any isolate-free
forest as well as for any isolate-free graph G. Whether this bound is true remains an
open question although quite some progress was made. In the seminal paper [16], the
conjecture was verified for forests in which each component is a caterpillar. Bujtés [9]
confirmed the conjecture for the class of forests in which no two leaves are at distance 4
apart, while in [10] she proved upper bounds for v,(G) which are better than 3/5|V(G)|
as soon as the minimum degree of G is at least 3. We also add that in [8], large families
of trees were constructed that attain the conjectured 3/5-bound and all extremal trees
on up to 20 vertices were found.

The game domination number has been studied also from several additional as-
pects (see [5, 7, 11]), nevertheless the algorithmic complexity of determining v4(G) for
a given graph G was not yet studied. This comes with no surprise, considering that the
complexity of the much older coloring game [2] has not been determined yet. Bodlaen-
der [3] proved that a version of the coloring game where the order of the vertices to be
colored is prescribed in advance is PSPACE-complete (see also [4]), but to the best of
our knowledge no result is known for the standard coloring game.

In this paper we prove that the complexity of verifying whether the game domina-
tion number of a graph is bounded by a given integer is in the class of PSPACE-complete
problems, implying that every problem solvable in polynomial space (possibly with ex-
ponential time) can be reduced to this problem. In particular, this shows that the game
domination number of a graph is harder to compute than any other classical domina-
tion parameter (which are generally NP-hard), unless NP=PSPACE. The reduction
we use can be computed with a working space of logarithmic size with respect to the
entry, making this problem log-complete in PSPACE. (For additional problems that
were recently proved to be PSPACE-complete see [1, 12, 13, 15].)

Throughout the paper we use the convention that dy, ds, . .. denotes the sequence of
vertices chosen by Dominator and si, so, ... the sequence chosen by Staller. Similarly,
in the Staller-start game we use the notation s/, s),... for the sequence chosen by
Staller and d},d,, ..., for Dominator. A partially-dominated graph is a graph together
with a declaration that some vertices are already dominated, that is, they need not be
dominated in the rest of the game. For a vertex subset S of a graph G, let G|S denote
the partially dominated graph in which vertices from S are already dominated (note
that S can be an arbitrary subset of V(G), and not only a union of closed neighborhoods
of some vertices).

In the following section, we present a reduction from the classical PSPACE-complete
problem POS-CNF to a game domination problem where some vertices are set to be
dominated before the game begins. Then, in Section 3, we describe how to extend
the reduction to the Staller-start domination game and to the game on a graph not
partially-dominated. We conclude with some open questions.



2 PSPACE complexity of the game domination problem

The game domination problem is the following:

GAME DOMINATION PROBLEM
Input: A graph G, and an integer m.
Question: Is v4(G) < m?

To prove the complexity of the GAME DOMINATION PROBLEM, we propose a reduc-
tion from the POS-CNF problem, which is known to be log-complete in PSPACE [19].
In POS-CNF we are given a set of k variables, and a formula that is a conjunction of
n disjunctive clauses, in which only positive variables appear (that is, no negations of
variables). Two players alternate turns, Player 1 setting a previously unset variable
TRUE, and Player 2 setting one FALSE. After all k£ variables are set, Player 1 wins
if the formula is TRUE, otherwise Player 2 wins. In the proof of our main result, we
transform a given formula F using k variables and n disjunctive clauses into a partially
dominated graph Gz, having 9k + n + 4 vertices. We then prove that Player 1 has a
winning strategy for a formula F if and only if v4(Gr) < 3k + 2.

In the construction of G, we use k copies of the widget graph W in correspondence
with the k variables. The graph W is constructed from the disjoint union of the cocktail-
party graph Kg — M on the vertex set {ag, x,2’,y, v/, 2} with asz, z2’,yy' ¢ E(W), and
of the path P : bya1by, by the addition of the edges byx, bix’, bay, boy’ and a;z. Moreover,
the vertices a; and as are assumed to be dominated, that is, we are considering the
partially dominated graph W|{a1,as}. In Fig. 1 the graph W is shown, where the
vertices a1 and as are filled black to indicate that they are assumed to be dominated.

Figure 1: The widget graph W used to represent each variable

In the proof of the main result, we use several times the following properties of the
graph W.

Observation 1 Let W be the widget graph. Then



(1) vg(Wl{a1,a2}) =3 and a1 is an optimal first move;

(ii) if di = a1, and Staller passes her first move, then Dominator can finish the game
in Wl{a1,as} in two moves (by playing az);

(iii) if di = a1, s1 = by, and Dominator passes his second move, then Staller can
ensure four moves will be played in W{ai,as} (e.g. by playing y);

(i) vg(Wl{a1,a2}) = 3 and by is an optimal first move for Staller;

(v) if 8§ = b1 and Dominator responds playing a1 or as, then Staller can enforce four
moves are played in W|{a1,a2} (by playing respectively y or x);

(vi) if Staller starts and Dominator passes his first move, then after any second move
of Staller, Dominator can finish the game in W|{a1,as} with the third move,
ensuring in addition that ay or as is played. O

Next we present a construction of the graph Gr, when we are given a formula F
with k variables and n clauses. We require that k is even, otherwise we add a variable
that appears in no clause. For each variable X in F we take a copy Wx of the graph
Wl{ai,as} (that is, we assume that a; and ag in the copy Wx are dominated in Gr).
For each disjunctive clause C; in the formula we add a vertex ¢;, and for each X that
appears in C; we make ¢; adjacent to both a; and ao from the copy of Wx. Next, we
add edges c;c; between each two vertices, corresponding to disjunctive clauses C;,C;
that appear in F. Hence the vertices ¢;, 1 < i < n, induce a clique Q of size n. Finally,
we add a copy P : p1p2psps of a path Py, and add edges pic; and pyc; for 1 < ¢ < n.
See Fig. 2 for an example of the construction.

Figure 2: Example of the graph for formula X; A (X2 V X3) A (X3 V X4)



We call Wx a widget subgraph of Gz, and in the notation for vertices in Wx we
add X as an index to a vertex from Wy . For instance, a vertex that corresponds to a;
in a widget subgraph Wx will be denoted by a1 x, while the vertex that corresponds
to z in this subgraph will be denoted by zx.

The following observation will also be useful when the game is played on Gr.

Observation 2 Let H be a graph isomorphic to the subgraph of Gr, induced by the
vertices from QU P, and let S C V(Q) be some vertices already dominated (see Fig. 3).

(1) If Q is not entirely dominated, that is, if S # V(Q), then v4(H|S) = 3.
(i1) If S =V (Q), then v4(H|S) = 2.
(ii) For any S CV(Q), v,(H|S) = 2.

C3 Cc2

Cq C1

b1 P4
D2 p3

Figure 3: The graph H|{ci,c2,cq} for n =4

Theorem 3 Player 1 has a winning strategy for a formula F in the POS-CNF game
if and only if v4(Gr) < 3k + 2.

Proof.

We first assume that Player 1 has a winning strategy for F in the POS-CNF game,
and give a strategy of Dominator that ensures at most 3k 4+ 2 moves will be played in
Game 1 on Gx. To describe the strategy of Dominator in G, we use a simultaneously
played POS-CNF game on F.

The first move of Dominator is to play a1, x where X is the first variable Player 1
would set TRUE in the POS-CNF game. Then whenever Staller makes a move which
is the first move in a widget subgraph Wy, Dominator considers this move as Player 2
setting Y FALSE in the POS-CNF game, and follows the POS-CNF winning strategy
of Player 1 (playing a; x where X is the next variable he would set TRUE in the POS-
CNF game) as long as there are undefined variables. If Staller responds in a widget
subgraph where one move was played already, Dominator answers in the same widget
subgraph W to guarantee that no more than three moves are played in Wx (preventing
situation from Observation 1(iii), if X is a variable set TRUE). If X is a variable set



FALSE, Dominator plays aj x or as x, which is possible by Observation 1(vi) (otherwise
Staller could be allowed to play a; x later on, if some adjacent vertices in () were still
undominated!). This way, he ensures that no more than three moves are played in each
widget subgraph. If Staller played in @ U P, then using Observation 2(iii), Dominator
finishes dominating ) U P in the next move.

Suppose now that Staller did not play in QU P, and that all variables are set TRUE
or FALSE. Since Dominator followed POS-CNF strategy, F is true and all vertices in
@ are thus dominated. Then Dominator can safely play ps and ensure no more than
two moves are played in QU P (by Observation 2(ii)). Recalling that he also ensures at
most three moves are played in each of the widget subgraphs (also in widget subgraphs
that may not be entirely dominated yet), this implies v,(Gr) < 3k + 2.

We now propose a strategy of Staller that ensures at least 3k + 3 moves will be
played in G when Player 2 has a winning strategy for F in the POS-CNF game.

The basic part of the strategy of Staller is that whenever Dominator makes a move
in a widget subgraph Wy in which no move was made before, she responds in the same
widget subgraph Wx by playing b1 x or by x, ensuring three moves are played in Wx
(by Observation 1(i)). Note that she has to respond or there is a possibility that only
two moves will be played in the widget subgraph by Observation 1(ii).

To describe the rest of Staller’s strategy in Gz, we also use a simultaneously played
POS-CNF game on F. Whenever Dominator makes a move on a; x or as x in some
widget subgraph Wy, Staller considers Player 1 set the variable X TRUE in the POS-
CNF game on F. Then, when Staller’s move is not forced by the basic part of her
strategy, she will play in the widget subgraph Wy that corresponds to the variable Y
Player 2 would set FALSE in the POS-CNF game, as explained later.

Note that after Dominator plays aj x or as x as the first move in some widget
subgraph W, Staller has to respond in Wx by the basic part of her strategy, yielding
the possibility for Dominator to set another variable TRUE (and thus Player 1 would
be cheating in the POS-CNF game). However, if Dominator does not play in W,
there is a threat that four moves will be played in Wx by Observation 1(iii). Suppose
the next move of Dominator is not in Wx. As long as the next move of Dominator
is in some Wy in which no moves were made before, Staller must respond in Wy (by
the basic part of her strategy) to ensure three moves will be played in this Wy . In the
meantime, Dominator may have created some more threats by playing some ajy or
azy. (Alternatively, his move could be a first move in a widget subgraph Wy, different
from a; 7. The response of Staller playing by z or by 7 in all cases implies that at least
three moves will be played in W.) Eventually, Dominator makes a move that does
not force an immediate answer from Staller (that is, the third move in some widget
subgraph Wy or a move in @ U P). Unless he eliminates all threats with that move,
Staller can use one threat (say in Wy ) and enforce four vertices are played in the widget
subgraph Wy. In any case, at least two moves must be played in Q U P to dominate
P, so at least 3k + 3 moves will be played in the game, as desired.

'This is actually why such a complicated widget is needed for the variables, otherwise two adjacent
vertices could serve as a widget subgraph.



If Dominator was able to eliminate all threats, it means that only one variable was
set TRUE. Then Staller can select a variable Y according to the strategy of Player 2
in the POS-CNF game, and set it FALSE either by playing b1y as the first move in
Wy (forcing three moves by Observation 1(iv)), or by playing a third move in Wy,
such that none of these three moves is a;y or azy. Observe that if Dominator tries
to re-set the variable TRUE by playing a;y or agy, then by Observation 1(v), Staller
can immediately enforce four moves to be played in Wy-. If Dominator plays any other
second move in Wy, Staller just answers in Wy, avoiding a1y and asy, and then all
vertices of Wy are dominated.

Eventually, Dominator plays in @ U P (note that since k is even, Staller by her
strategy forces Dominator to play first in @ U P). Then since Player 2 wins the POS-
CNF game, not all vertices of @) are dominated at that point. Thus by Observation 2(i),
Staller can ensure three moves are played in Q U P and this makes a total of 3k + 3
moves, completing the proof. O

3 Conclusions and open problems

First observe that the reduction from POS-CNF to Game Domination Problem can be
computed with a working space of size O(log(k + n)); giving an explicit algorithm is a
routine work. Therefore, recalling that POS-CNF is log-complete in PSPACE [19], we
get:

Corollary 4 GAME DOMINATION PROBLEM is log-complete in PSPACE.

We can modify the above reduction to prove the PSPACE-completeness of the
Staller-start game domination problem. Given a formula F, consider the formula F’,
where we add a variable Xy that we insert into every clause. Clearly, if Player 2
starts the POS-CNF game on F’, he must set variable Xy FALSE as his first move
to have a chance to win. Then, the winner of the POS-CNF game on the formula F’
where Player 2 starts, is the same as the winner of the POS-CNF game on F. Using
this knowledge, it is straightforward to use the above reduction for the Staller-start
domination game.

Another natural question is whether having a partially dominated graph is necessary
for the reduction. We describe now how to build a graph where no vertices are assumed
already dominated. Consider a formula F. First add a variable Xy and modify F into
a formula F’ as described in the previous paragraph. Now we take the corresponding
graph Gz/|S where S contains the vertices aj x,az x for all variables X (including
Xo). Add to Gz (where S is no longer dominated) a star K; 3 with center v, and
add an edge between v and each vertex in S; we denote the resulting graph G’-. We
observe that v4(G'z) < 3k + 6 if and only if Player 1 wins the POS-CNF game on F
(Dominator must choose v for his first move, and Staller has to answer with b; x,,).
Similarly, 75 (G’%) < 3k + 7 if and only if Player 1 wins the POS-CNF game on F.



A related problem is to try to find families of graphs where the game domination
number can be computed efficiently. Such families obviously include those where the
exact formula is known (as already mentioned, these include paths, cycles, combs, and
line graphs of complete multipartite graphs). Another family where we expect the
domination game number can be computed in polynomial time is the class of proper
interval graphs. For these graphs, it looks like both players’ strategy can be described
by a greedy algorithm, though we did not manage to prove it. Hence we pose:

Question 1 Can the game domination number of (proper) interval graphs be computed
in polynomial time?

In particular, interval graphs are also dually chordal graphs, which are proven in [11]
to be the so-called no-minus graphs (that is, graphs G for which for all subsets of vertices
S, 74(G1S) < 74(G1S)). In that paper, stronger relations between the game domination
number of the disjoint union of two graphs and the game domination number of the
components are given for no-minus graphs, which could prove useful in Question 1. On
the other hand, it seems likely that the decision problem remains PSPACE-complete
even when restricted to split graphs, which are also proven to be no-minus in [11]. Note
that this would be a similar dichotomy as proved in [14] for the ROLE ASSIGNMENT
problem which can be solved in polynomial time on proper interval graph and is GRAPH
IsomorpHISM-hard on chordal graphs.

Observe that the domination game on split graphs transposes to a game on hyper-
graphs where Dominator chooses edges and Staller chooses vertices (not chosen before
nor belonging to a chosen edge), and the game ends after all vertices either are chosen
or belong to a chosen edge. The aim of Dominator is again to finish the game as soon
as possible, while Staller tries to have the game last for as long as possible. The game
where both players must choose hyperedges may be of independent interest.
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